Open
Close

Гравитация и земное притяжение. Земное притяжение. Гравитационное поле Земли. Ссылки и примечания

Мы живем на Земле, мы перемещаемся по ее поверхности, как по краю какого-то скалистого утеса, который возвышается над бездонной пропастью. Мы держимся на этом краю пропасти только благодаря тому, что на нас действует сила притяжения Земли ; мы не падаем с земной поверхности только потому, что имеем, как говорят, какую-то определенную весомость. Мы мгновенно слетели бы с этого «утеса» и стремительно полетели бы в бездну пространства, если бы вдруг перестала действовать сила тяжести нашей планеты. Мы бесконечно долго носились бы в бездне мирового пространства, не зная ни верха, ни низа.

Передвижение по Земле

Своим передвижением по Земле мы тоже обязаны наличию силы тяжести. Мы ходим по Земле и непрестанно преодолеваем сопротивление этой силы, ощущая ее действие, как некоторый тяжелый груз на своих ногах. Этот «груз» особенно дает себя знать при подъеме в гору, когда приходится волочить его, словно какие-то тяжелые гири, привешенные к ногам. Он не менее резко сказывается и при спуске с горы, вынуждая нас ускорять шаги. Преодоление силы тяжести при передвижении по Земле. Эти направления – «верх» и «низ» – указывает нам только сила тяжести. Во всех точках земной поверхности она направлена почти к центру Земли. Поэтому, понятия «низ» и «верх» будут диаметрально противоположными для так называемых антиподов, т. е. людей, обитающих на диаметрально противоположных частях поверхности Земли. Например, то направление, которое для живущих в Москве, показывает «низ», для жителей Огненной Земли показывает «верх». Направления, показывающие «низ» для людей, находящихся на полюсе и на экваторе, составляют прямой угол; они перпендикулярны между собой. Вне Земли, при удалении от нее, сила тяжести уменьшается, так как уменьшается сила притяжения (сила притяжения Земли, как и всякого другого мирового тела, распространяется в пространстве неограниченно далеко) и увеличивается центробежная сила, которая уменьшает силу тяжести. Следовательно, чем выше мы будем поднимать какой-нибудь груз, например, на воздушном шаре, тем меньше будет весить этот груз.

Центробежная сила Земли

Вследствие суточного вращения возникает центробежная сила Земли . Эта сила всюду на поверхности Земли действует в направлении, перпендикулярном к земной оси и в сторону от нее. Центробежная сила невелика по сравнению с силой притяжения . На экваторе она достигает наибольшей величины. Но и здесь, согласно вычислениям Ньютона, центробежная сила составляет только 1/289 долю силы притяжения. Чем дальше к северу от экватора, тем меньше центробежная сила. На самом полюсе она равна нулю .
Действие центробежной силы Земли. На некоторой высоте центробежная сила возрастет настолько, что она будет равна силе притяжения, и сила тяжести сделается сначала равной нулю, а затем, с увеличением расстояния от Земли, примет отрицательное значение и будет непрерывно возрастать, будучи направлена в противоположную сторону по отношению к Земле.

Сила тяжести

Равнодействующая силы притяжения Земли и центробежной силы называется силой тяжести . Сила тяжести во всех точках земной поверхности была бы одинакова, если бы наша совершенно точного и правильного шара, если бы ее масса всюду была одинаковой плотности и, наконец, если не было бы суточного вращения вокруг оси. Но, так как наша Земля не является правильным шаром, не состоит во всех своих частях из пород одинаковой плотности и все время вращается, то, следовательно, сила тяжести в каждой точке земной поверхности несколько различна . Стало быть, в каждой точке земной поверхности величина силы тяжести зависит от величины центробежной силы, уменьшающей силу притяжения, от плотности земных пород и расстояния от центра Земли . Чем больше это расстояние, тем меньше сила тяжести. Радиусы Земли, которые одним своим концом как бы упираются в земной экватор, – самые большие. Радиусы, имеющие своим концом точку Северного или Южного полюса, – наименьшие. Поэтому все тела на экваторе имеют меньшую тяжесть (меньший вес), чем на полюсе. Известно, что на полюсе сила тяжести больше, чем на экваторе, на 1/289 долю . Эту разность тяжести одних и тех же тел на экваторе и на полюсе можно узнать при их взвешивании с помощью пружинных весов. Если же мы будем взвешивать тела на весах с гирями, то этой разности мы не заметим. Весы будут показывать один и тот же вес, как на полюсе, так и на экваторе; гири, как и тела, которые взвешиваются, тоже, конечно, изменятся в весе.
Пружинные весы как способ измерения силы тяжести на экваторе и на полюсе. Допустим, что корабль с грузом весит в заполярных областях, вблизи полюса, около 289 тысяч тонн. По приходе в порты вблизи экватора корабль с грузом будет весить уже только около 288 тысяч тонн. Таким образом, на экваторе корабль потерял в весе около тысячи тонн. Все тела держатся на земной поверхности только благодаря тому, что на них действует сила тяжести. Утром, вставая с кровати, вы в состоянии спустить ноги на пол только потому, что эта сила тянет их вниз.

Сила тяжести внутри Земли

Посмотрим, как изменяется сила тяжести внутри Земли . С углублением внутрь Земли сила тяжести непрерывно увеличивается вплоть до некоторой глубины. На глубине около тысячи километров сила тяжести будет иметь максимальное (наибольшее) значение и увеличится по сравнению с ее средней величиной на земной поверхности (9,81 м/сек) приблизительно на пять процентов. При дальнейшем углублении сила тяжести станет непрерывно уменьшаться и в центре Земли будет равна нулю.

Предположения относительно вращения Земли

Наша Земля вращаясь делает полный оборот вокруг своей оси в 24 часа. Центробежная сила, как известно, возрастает пропорционально квадрату угловой скорости. Следовательно, если Земля ускорит свое вращение вокруг оси в 17 раз, то центробежная сила увеличится в 17 раз в квадрате, т. е. в 289 раз. В обычных условиях, как уже сказано выше, центробежная сила на экваторе составляет 1/289 долю силы притяжения. При увеличении в 17 раз сила притяжения и центробежная сила делаются равными. Сила тяжести – равнодействующая этих двух сил – при подобном увеличении скорости осевого вращения Земли будет равна нулю.
Значение центробежной силы при вращении Земли. Эта скорость вращения Земли вокруг оси называется критической, так как при такой скорости вращения нашей планеты все тела на экваторе потеряли бы свою тяжесть. Продолжительность суток в этом критическом случае будет составлять приблизительно 1 час 25 минут. При дальнейшем ускорении вращения Земли все тела (прежде всего на экваторе) сначала потеряют свою весомость, а затем будут отброшены центробежной силой в пространство, а сама Земля этой же силой будет разорвана на части. Заключение наше было бы правильным, если бы Земля представляла собой абсолютно твердое тело и при ускорении своего вращательного движения не изменила бы своей формы, другими словами, если бы радиус земного экватора сохранил свою величину. Но известно, что при ускорении вращения Земли поверхность ее должна будет претерпеть некоторую деформацию: она станет сжиматься в направлении полюсов и расширяться в направлении экватора; она будет принимать все более и более приплюснутый вид. Длина радиуса земного экватора при этом начнет возрастать и этим увеличивать центробежную силу. Таким образом, тела на экваторе потеряют свою тяжесть раньше, чем скорость вращения Земли увеличится в 17 раз, и катастрофа с Землей наступит раньше, чем сутки сократят свою продолжительность до 1 часа 25 минут. Иначе говоря, критическая скорость вращения Земли будет несколько меньше, а предельная длина суток несколько больше. Представьте себе мысленно, что скорость вращения Земли вследствие каких-то неизвестных причин приблизится к критической. Что тогда станет с земными обитателями? Прежде всего, всюду на Земле сутки будут составлять, например, около двух-трех часов. День и ночь будут сменяться калейдоскопически быстро. Солнце, как в планетарии, очень быстро будет перемещаться по небу, и едва вы успеете проснуться и умыться, как оно уже скроется за горизонтом, и на смену ему наступит ночь. Люди перестанут точно ориентироваться во времени. Никто не будет знать, которое сейчас число месяца и какой день недели. Нормальная человеческая жизнь будет дезорганизована. Маятниковые часы замедлят свой ход, а затем всюду остановятся. Они ведь ходят потому, что на них действует сила тяжести. Ведь и в нашем быту, когда «ходики» начинают отставать или спешить, то необходимо укорачивать или удлинять их маятник, а то еще и подвешивать к маятнику какой-нибудь дополнительный груз. Тела на экваторе будут терять свою весомость. В этих воображаемых условиях легко можно будет поднимать очень тяжелые тела. Не составит особого труда взвалить на плечи лошадь, слона или поднять даже целый дом. Птицы потеряют возможность приземляться. Вот кружится над корытом с водой стая воробьев. Они громко чирикают, но не в состоянии спуститься. Брошенная им горсть зерна повисла бы над Землей отдельными зернинками. Пусть, далее, скорость вращения Земли все более и более приближается к критической. Наша планета сильно деформируется и принимает все более приплюснутый вид. Она уподобляется быстро вращающейся карусели и грозит вот-вот сбросить с себя своих обитателей. Реки тогда перестанут течь. Они будут представлять собой длинные стоячие болота. Громадные океанские корабли будут еле касаться своими днищами водной глади, подводные лодки не в состоянии будут погрузиться в глубины моря, рыбы и морские животные будут плавать по поверхности морей и океанов, они уже не смогут скрыться в морской пучине. Моряки уже не смогут бросить якорь, они перестанут владеть рулями своих судов, большие и малые корабли будут стоять неподвижно. Вот еще одна воображаемая картина. Пассажирский железнодорожный поезд стоит у вокзала. Свисток уже дан; поезд должен отойти. Машинист принял все зависящие от него меры. Кочегар щедро бросает в топку уголь. Крупные искры летят из трубы паровоза. Колеса отчаянно вертятся. Но паровоз стоит неподвижно. Его колеса не касаются рельс, и нет трения между ними. Настанет момент, когда люди не будут иметь возможности спуститься на пол; они прилипнут, как мухи, к потолку. Пусть скорость вращения Земли все увеличивается. Центробежная сила все более превосходит по своей величине силу притяжения... Тогда люди, животные, предметы домашнего обихода, дома, все находящиеся на Земле предметы, весь животный ее мир будут отброшены в мировое пространство. От Земли отделится Австралийский материк и колоссальной черной тучей повиснет в пространстве. В глубь безмолвной бездны, прочь от Земли, полетит Африка. В громадное количество сферических капель превратятся воды Индийского океана и тоже полетят в беспредельные дали. Средиземное море, не успев еще превратиться в гигантские скопления капель, всей своей толщей воды отделится от днища, по которому свободно можно будет пройти от Неаполя до Алжира. Наконец, скорость вращения настолько увеличится, центробежная сила настолько возрастет, что вся Земля разорвется на части. Однако и этого случиться не может. Скорость вращения Земли, как мы уже говорили выше, не возрастает, а наоборот, даже немного убывает, – правда, настолько мало, что, как мы уже знаем, за 50 тысяч лет продолжительность суток увеличивается всего только на одну секунду. Иначе говоря, Земля теперь вращается с такой скоростью, которая необходима, чтобы под теплотворными, живительными лучами Солнца многие тысячелетия процветал животный и растительный мир нашей планеты.

Значение трения

Посмотрим теперь, какое значение имеет трение и что было бы, если бы оно отсутствовало. Трение, как известно, вредно отражается на нашей одежде: у пальто раньше всего изнашиваются рукава, а у ботинок подошвы, так как рукава и подошвы больше всего подвержены действию трения. Но вообразите себе на минуту, что поверхность нашей планеты была как бы хорошо отполированная, совершенно гладкая, и возможность трения была бы исключена. Могли ли бы мы ходить по такой поверхности? Конечно, нет. Всем известно, что даже по льду и по натертому полу идти очень трудно и приходится остерегаться, чтобы не упасть. А ведь поверхность льда и натертого пола все же обладает некоторым трением.
Сила трения на льду. Если бы на поверхности Земли исчезла сила трения, то на нашей планете вечно царил бы неописуемый хаос. Если не будет никакого трения, то будет вечно бушевать море и никогда не утихнет буря. Песчаные смерчи не перестанут висеть над Землей, и постоянно будет дуть ветер. Мелодичные звуки рояля, скрипки и страшный рев хищных зверей смешаются и без конца будут распространяться в воздухе. При отсутствии трения тело, пришедшее в движение, никогда бы не остановилось. По абсолютно гладкой земной поверхности вечно перемешались бы в самых разнообразных направлениях различные тела и предметы. Смешон и трагичен был бы мир Земли, если бы не существовало трения и притяжения Земли.

Гравитационная сила – это сила, с которой притягиваются друг к другу тела определённой массы, находящиеся на определённом расстоянии друг от друга.

Английский учёный Исаак Ньютон в 1867 г. открыл закон всемирного тяготения. Это один из фундаментальных законов механики. Суть этого закона в следующем: любые две материальные частицы притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Сила притяжения – первая сила, которую почувствовал человек. Это сила, с которой Земля воздействует на все тела, находящиеся на её поверхности. И эту силу любой человек ощущает как собственный вес.

Закон всемирного тяготения


Существует легенда, что закон всемирного тяготения Ньютон открыл совершенно случайно, гуляя вечером по саду своих родителей. Творческие люди постоянно находятся в поиске, а научные открытия - это не мгновенное озарение, а плод длительной умственной работы. Сидя под яблоней, Ньютон осмысливал очередную идею, и вдруг на голову ему упало яблоко. Ньютону было понятно, что яблоко упало в результате действия силы притяжения Земли. «Но почему не падает на Землю Луна? - задумался он. - Значит, на неё действует ещё какая-то сила, удерживающая её на орбите». Так был открыт знаменитый закон всемирного тяготения .

Учёные, изучавшие до этого вращение небесных тел, считали, что небесные тела подчиняются каким-то совершенно другим законам. То есть, предполагалось, что существуют совершенно разные законы притяжения на поверхности Земли и в космосе.

Ньютон объединил эти предполагаемые виды гравитации. Анализируя законы Кеплера, описывающие движение планет, он пришёл к выводу, что сила притяжения возникает между любыми телами. То есть, и на яблоко, упавшее в саду, и на планеты в космосе действуют силы, подчиняющиеся одному закону – закону всемирного тяготения.

Ньютон установил, что законы Кеплера действуют только в том случае, если между планетами существует сила притяжения. И эта сила прямо пропорциональна массам планет и обратно пропорциональная квадрату расстояния между ними.

Сила притяжения рассчитывается по формуле F=G m 1 m 2 / r 2

m 1 – масса первого тела;

m 2 – масса второго тела;

r – расстояние между телами;

G – коэффициент пропорциональности, который называют гравитационной постоянной или постоянной всемирного тяготения .

Его значение определили экспериментально. G = 6,67·10 -11 Нм 2 /кг 2

Если две материальные точки с массой, равной единице массы, находятся на расстоянии, равном единице расстояния, то они притягиваются с силой, равной G .

Силы притяжения и есть гравитационные силы. Их называют ещё силами тяготения . Они подчинены закону всемирного тяготения и проявляются всюду, так как все тела имеют массу.

Сила тяжести


Гравитационная сила вблизи поверхности Земли – это сила, с которой все тела притягиваются к Земле. Её называют силой тяжести . Она считается постоянной, если расстояние тела от поверхности Земли мало по сравнению с радиусом Земли.

Так как сила тяжести, являющаяся гравитационной силой, зависит от массы и радиуса планеты, то на разных планетах она будет разной. Так как радиус Луны меньше радиуса Земли, то и сила притяжения на Луне меньше, чем на Земле в 6 раз. А на Юпитере, наоборот, сила тяжести в 2,4 раза больше силы тяжести на Земле. Но масса тела остаётся постоянной, независимо от того, где её измеряют.

Многие путают значение веса и силы тяжести, считая, что сила тяжести всегда равна весу. Но это не так.

Сила, с которой тело давит на опору или растягивает подвес, это и есть вес. Если убрать опору или подвес, тело начнёт падать с ускорением свободного падения под действием силы тяжести. Сила тяжести пропорциональна массе тела. Она вычисляется по формуле F = mg , где m – масса тела, g – ускорение свободного падения.

Вес тела может изменяться, а иногда и вообще исчезать. Представим себе, что мы находимся в лифте на верхнем этаже. Лифт стоит. В этот момент наш вес Р и сила тяжести F, с которой Земля притягивает нас, равны. Но как только лифт начал двигаться вниз с ускорением а , вес и сила тяжести уже не равны. Согласно второму закону Ньютона mg + P = ma . Р =m g - ma .

Из формулы видно, что наш вес при движении вниз уменьшился.

В момент, когда лифт набрал скорость и стал двигаться без ускорения, наш вес снова равен силе тяжести. А когда лифт стал замедлять своё движение, ускорение а стало отрицательным, и вес увеличился. Наступает перегрузка.

А если тело двигается вниз с ускорением свободного падения, то вес и вовсе станет равным нулю.

При a =g Р =mg-ma= mg - mg=0

Это состояние невесомости.

Итак, все без исключения материальные тела во Вселенной подчиняются закону всемирного тяготения. И планеты вокруг Солнца, и все тела, находящиеся у поверхности Земли.

На вопрос «Что такое сила?» физика отвечает так: «Сила есть мера взаимодействия вещественных тел между собой или между телами и другими материальными объектами - физическими полями». Все силы в природе могут быть отнесены к четырем фундаментальным видам взаимодействий: сильному, слабому, электромагнитному и гравитационному. Наша статья рассказывает о том, что представляют собой гравитационные силы - мера последнего и, пожалуй, наиболее широко распространенного в природе вида этих взаимодействий.

Начнем с притяжения земли

Всем живущим известно, что существует сила, которая притягивает объекты к земле. Она обычно именуется гравитацией, силой тяжести или земным притяжением. Благодаря ее наличию у человека возникли понятия «верх» и «низ», определяющие направление движения или расположения чего-либо относительно земной поверхности. Так в частном случае, на поверхности земли или вблизи нее, проявляют себя гравитационные силы, которые притягивают объекты, обладающие массой, друг к другу, проявляя свое действие на любых как самых малых, так и очень больших, даже по космическим меркам, расстояниях.

Сила тяжести и третий закон Ньютона

Как известно, любая сила, если она рассматривается как мера взаимодействия физических тел, всегда приложена к какому-нибудь из них. Так и в гравитационном взаимодействии тел друг с другом, каждое из них испытывает такие виды гравитационных сил, которые вызваны влиянием каждого из них. Если тел всего два (предполагается, что действием всех других можно пренебречь), то каждое из них по третьему закону Ньютона будет притягивать другое тело с одинаковой силой. Так Луна и Земля притягивают друг друга, следствием чего являются приливы и отливы земных морей.

Каждая планета в Солнечной системе испытывает сразу несколько сил притяжения со стороны Солнца и других планет. Конечно, определяет форму и размеры ее орбиты именно сила притяжения Солнца, но и влияние остальных небесных тел астрономы учитывают в своих расчетах траекторий их движения.

Что быстрее упадет на землю с высоты?

Главной особенностью этой силы является то, что все объекты падают на землю с одной скоростью, независимо от их массы. Когда-то, вплоть до 16-го ст., считалось, что все наоборот - более тяжелые тела должны падать быстрее, чем легкие. Чтобы развеять это заблуждение Галилео Галилею пришлось выполнить свой знаменитый опыт по одновременному сбрасыванию двух пушечных ядер разного веса с наклонной Пизанской башни. Вопреки ожиданиям свидетелей эксперимента оба ядра достигли поверхности одновременно. Сегодня каждый школьник знает, что это произошло благодаря тому, что сила тяжести сообщает любому телу одно и то же ускорение свободного падения g = 9,81 м/с 2 независимо от массы m этого тела, а величина ее по второму закону Ньютона равна F = mg.

Гравитационные силы на Луне и на других планетах имеют разные значения этого ускорения. Однако характер действия силы тяжести на них такой же.

Сила тяжести и вес тела

Если первая сила приложена непосредственно к самому телу, то вторая к его опоре или подвесу. В этой ситуации на тела со стороны опор и подвесов всегда действуют силы упругости. Гравитационные силы, приложенные к тем же телам, действуют им навстречу.

Представьте себе груз, подвешенный над землей на пружине. К нему приложены две силы: сила упругости растянутой пружины и сила тяжести. Согласно третьему закону Ньютона груз действует на пружину с силой, равной и противоположной силе упругости. Эта сила и будет его весом. У груза массой 1 кг вес равен Р = 1 кг ∙ 9,81 м/с 2 = 9,81 Н (ньютон).

Гравитационные силы: определение

Первая количественная теория гравитации, основанная на наблюдениях движения планет, была сформулирована Исааком Ньютоном в 1687 году в его знаменитых "Началах натуральной философии". Он писал, что силы притяжения, которые действуют на Солнце и планеты, зависят от количества вещества, которое они содержат. Онираспространяются на большие расстояния и всегда уменьшаются как величины, обратные квадрату расстояния. Как же можно вычислить эти гравитационные силы? Формула для силы F между двумя объектами с массами m 1 и m 2 , находящимися на расстоянии r, такова:

  • F=Gm 1 m 2 /r 2 ,
    где G — константа пропорциональности, гравитационная постоянная.

Физический механизм гравитации

Ньютон был не полностью удовлетворен своей теорией, поскольку она предполагала взаимодействие между притягивающимися телами на расстоянии. Сам великий англичанин был уверен, что должен существовать некий физический агент, ответственный за передачу действия одного тела на другое, о чем он вполне ясно высказался в одном из своих писем. Но время, когда было введено понятие гравитационного поля, которое пронизывает все пространство, наступило лишь через четыре столетия. Сегодня, говоря о гравитации, мы можем говорить о взаимодействии любого (космического) тела с гравитационным полем других тел, мерой которого и служат возникающие между каждой парой тел гравитационные силы. Закон всемирного тяготения, сформулированный Ньютоном в вышеприведенной форме, остается верным и подтверждается множеством фактов.

Теория гравитации и астрономия

Она была очень успешно применена к решению задач небесной механики во время XVIII и начале XIX века. К примеру, математики Д. Адамс и У. Леверье, анализируя нарушения орбиты Урана, предположили, что на него действуют гравитационные силы взаимодействия с еще неизвестной планетой. Ими было указано ее предполагаемое положение, и вскоре астрономом И. Галле там был обнаружен Нептун.

Хотя оставалась одна проблема. Леверье в 1845 году рассчитал, что орбита Меркурия прецессирует на 35"" за столетие, в отличие от нулевого значения этой прецессии, получаемого по теории Ньютона. Последующие измерения дали более точное значение 43"". (Наблюдаемая прецессия равна действительно 570""/век, но кропотливый расчет, позволяющий вычесть влияние от всех других планет, дает значение 43"".)

Только в 1915 г. Альберт Эйнштейн смог объяснить это несоответствие в рамках созданной им теории гравитации. Оказалось, что массивное Солнце, как и любое другое массивное тело, искривляет пространство-время в своей окрестности. Эти эффекты вызывают отклонения в орбитах планет, но у Меркурия, как самой малой и ближайшей к нашей звезде планете, они проявляются сильнее всего.

Инерционная и гравитационная массы

Как уже отмечалось выше, Галилей был первым, кто наблюдал, что объекты падают на землю с одинаковой скоростью, независимо от их массы. В формулах Ньютона понятие массы происходит от двух разных уравнений. Второй его закон говорит, что сила F, приложенная к телу с массой m, дает ускорение по уравнению F = ma.

Однако сила тяжести F, приложенная к телу, удовлетворяет формуле F = mg, где g зависит от другого тела, взаимодействующего с рассматриваемым (земли обычно, когда мы говорим о силе тяжести). В обоих уравнений m есть коэффициент пропорциональности, но в первом случае это инерционная масса, а во втором - гравитационная, и нет никакой очевидной причины, что они должны быть одинаковыми для любого физического объекта.

Однако все эксперименты показывают, что это действительно так.

Теория гравитации Эйнштейна

Он взял факт равенства инерционной и гравитационной масс как отправную точку для своей теории. Ему удалось построить уравнения гравитационного поля, знаменитые уравнения Эйнштейна, и с их помощью вычислить правильное значение для прецессии орбиты Меркурия. Они также дают измеренное значение отклонения световых лучей, которые проходят вблизи Солнца, и нет никаких сомнений в том, что из них следуют правильные результаты для макроскопической гравитации. Теория гравитации Эйнштейна, или общая теория относительности (ОТО), как он сам ее назвал, является одним из величайших триумфов современной науки.

Гравитационные силы - это ускорение?

Если вы не можете отличить инерционную массу от гравитационной, то вы не можете отличить и гравитацию от ускорения. Эксперимент в гравитационном поле вместо этого может быть выполнен в ускоренно движущемся лифте в отсутствии гравитации. Когда космонавт в ракете ускоряется, удаляясь от земли, он испытывает силу тяжести, которая в несколько раз больше земной, причем подавляющая ее часть приходит от ускорения.

Если никто не может отличить гравитацию от ускорения, то первую всегда можно воспроизвести путем ускорения. Система, в которой ускорение заменяет силу тяжести, называется инерциальной. Поэтому Луну на околоземной орбите также можно рассматривать как инерциальную систему. Однако эта система будет отличаться от точки к точке, поскольку изменяется гравитационное поле. (В примере с Луной гравитационное поле изменяет направление из одной точки в другую.) Принцип, согласно которому всегда можно найти инерциальную систему в любой точке пространства и времени, в которой физика подчиняется законам в отсутствии гравитации, называется принципом эквивалентности.

Гравитация как проявление геометрических свойств пространства-времени

Тот факт, что гравитационные силы можно рассматривать как ускорения в инерциальных системах координат, которые отличаются от точки к точке, означает, что гравитация - это геометрическое понятие.

Мы говорим, что пространство-время искривляется. Рассмотрим мяч на плоской поверхности. Он будет покоиться или, если нет никакого трения, равномерно двигаться при отсутствии действия каких-либо сил на него. Если поверхность искривляется, мяч ускорится и будет двигаться до самой низкой точки, выбирая кратчайший путь. Аналогичным образом теория Эйнштейна утверждает, что четырехмерное пространство-время искривлено, и тело движется в этом искривленном пространстве по геодезической линии, которой соответствует кратчайший путь. Поэтому гравитационное поле и действующие в нем на физические тела гравитационные силы - это геометрические величины, зависящие от свойств пространства-времени, которые наиболее сильно изменяются вблизи массивных тел.

Дон Деянг

Сила тяжести (или гравитация) прочно держит нас на земле и позволяет земле вращаться вокруг солнца. Благодаря этой невидимой силе дождь падает на землю, а уровень воды в океане каждый день то повышается, то снижается. Гравитация удерживает землю в сферической форме, а также не дает нашей атмосфере улетучиться в космическое пространство. Казалось бы, эта наблюдаемая каждый день сила притяжения должна быть хорошо изучена учеными. Но, нет! Во многом гравитация остается глубочайшей тайной для науки. Эта таинственная сила является замечательным примером того, насколько ограничены современные научные знания.

Что такое гравитация?

Исаак Ньютон интересовался этим вопросом еще в 1686 году и пришел к выводу, что гравитация - это сила притяжения, существующая между всеми предметами. Он понял, что та же самая сила, которая заставляет яблоко падать на землю, на своей орбите. На самом деле сила притяжения Земли служит причиной того, что во время вращения вокруг Земли Луна отклоняется каждую секунду от своего прямого пути примерно на один миллиметр (Рисунок 1). Универсальный Закон Гравитации Ньютона является одним из наибольших научных открытий всех времен.

Гравитация – «веревка», которая удерживает объекты на орбите

Рисунок 1. Иллюстрация орбиты луны, сделанная не в соответствии с масштабом. За каждую секунду луна проходит примерно 1 км. За это расстояние она отклоняется от прямого пути примерно на 1 мм – это происходит вследствие гравитационной тяги Земли (пунктирная линия). Луна постоянно как бы падает за (или вокруг) землей, как падают и планеты вокруг солнца.

Сила тяжести – одна из четырех фундаментальных сил природы (Таблица 1). Обратите внимание на то, что из четырех сил эта сила самая слабая, и все же она является доминирующей относительно крупных космических объектов. Как показал Ньютон, притягательная гравитационная сила между двумя любыми массами становится все меньше и меньше по мере того, как расстояние между ними становится все больше и больше, но она никогда полностью не достигает нуля (смотрите «Замысел гравитации»).

Поэтому каждая частица во всей вселенной фактически притягивает любую другую частицу. В отличие от сил слабого и сильного ядерного взаимодействия, сила притяжения является дальнодействующей (Таблица 1). Магнитная сила и сила электрического взаимодействия также являются дальнодействующими силами, но гравитация уникальна тем, что она и дальнодействующая и всегда притягательная, а значит, она никогда не может иссякнуть (в отличие от электромагнетизма, в котором силы могут либо притягивать, либо отталкивать).

Начиная с великого ученого-креациониста Майкла Фарадея в 1849 году, физики постоянно искали скрытую связь между силой притяжения и силой электромагнитного взаимодействия. В настоящее время ученые пытаются соединить все четыре фундаментальные силы в одно уравнение или так называемую «Теорию всего», но, безуспешно! Гравитация остается самой загадочной и наименее изученной силой.

Гравитацию невозможно каким-либо образом оградить. Каким бы ни был состав преграждающей перегородки, она не имеют никакого влияния на притяжение между двумя разделенными объектами. Это означает, что в лабораторных условиях невозможно создать антигравитационную камеру. Сила тяжести не зависит от химического состава объектов, но зависит от их массы, известной нам как вес (сила тяжести на объект равна весу этого объекта - чем больше масса, тем больше сила или вес.) Блоки, состоящие из стекла, свинца, льда или даже стирофома, и имеющие одинаковую массу, будут испытывать (и оказывать) одинаковую гравитационную силу. Эти данные были получены в ходе экспериментов, и ученые до сих пор не знают, как их можно теоретически объяснить.

Замысел в гравитации

Сила F между двумя массами m 1 и m 2 , находящимися на расстоянии r, может быть записана в виде формулы F = (G m 1 m 2)/r 2

Где G - это гравитационная постоянная, впервые измеренная Генри Кавендишем в 1798 году.1

Это уравнение показывает, что гравитация снижается по мере того, как расстояние, r, между двумя объектами становится больше, но полностью никогда не достигает нуля.

Подчиняющаяся закону обратных квадратов природа этого уравнения просто захватывает. В конце концов, нет никакой необходимой причины, почему сила притяжения должна действовать именно так. В беспорядочной, случайной и эволюционирующей вселенной такие произвольные степени, как r 1.97 или r 2.3 казались бы более вероятными. Однако точные измерения показали точную степень, по крайней мере, до пяти десятичных разрядов, 2.00000. Как сказал один исследователь, этот результат кажется «слишком уж точным» .2 Мы можем сделать вывод, что сила притяжения указывает на точный, сотворенный дизайн. На самом деле, если бы степень хоть на чуть-чуть отклонилась от 2, орбиты планет и вся вселенная стали бы нестабильными.

Ссылки и примечания

  1. Говоря техническим языком, G = 6.672 x 10 –11 Nm 2 kg –2
  2. Томпсен, Д., «Очень точно о гравитации», Science News 118(1):13, 1980.

Так что же такое в действительности гравитация? Каким образом эта сила способна действовать в таком огромном, пустом космическом пространстве? И зачем она вообще существует? Науке никогда не удавалось ответить на эти основные вопросы о законах природы. Сила притяжения не может появиться медленно путем мутаций или естественного отбора. Она действует с самого начала существования вселенной. Как и всякий другой физический закон, гравитация, несомненно, является замечательным свидетельством запланированного сотворения.

Одни ученые пытались объяснить гравитацию с помощью невидимых частиц, гравитонов, которые движутся между объектами. Другие говорили о космических струнах и гравитационных волнах. Недавно ученым с помощью специально созданной лаборатории LIGO (англ. Laser Interferometer Gravitational-Wave Observatory) удалось только увидеть эффект гравитационных волн. Но природу этих волн, каким образом физически объекты взаимодействуют друг с другом на огромных расстояниях, изменяя их фору, все же остается для всех большим вопросом. Мы просто не знаем природу возникновения силы гравитации и каким образом она удерживает стабильность всей вселенной.

Сила притяжения и Писание

Два места из Библии могут помочь нам понять природу гравитации и физическую науку в целом. Первое место, Колоссянам 1:17, объясняет, что Христос «есть прежде всего, и все Им стоит» . Греческий глагол стоит (συνισταω sunistao ) означает: сцепляться, сохраняться или удерживаться вместе. Греческое использование этого слова за пределами Библии обозначает сосуд, с содержащейся в нем водой . Слово, которое используется в книге Колоссянам, стоит в совершенном времени, что как правило, указывает на настоящее продолжающееся состояние, которое возникло из завершенного прошедшего действия. Один из используемых физических механизмов, о котором идет речь, явно сила притяжения, установленная Творцом и безошибочно поддерживаемая и сегодня. Только представьте: если бы на мгновение перестала действовать сила притяжения, несомненно, наступил бы хаос. Все небесные тела, включая землю, луну и звезды, не удерживались бы больше вместе. Все тот час разделилось бы на отдельные, маленькие части.

Второе место Писания, Евреям 1:3, заявляет, что Христос «держит все словом силы Своей». Слово держит (φερω pherō ) снова описывает поддерживание или сохранение всего, включая гравитацию. Слово держит , используемое в этом стихе, означает намного больше, чем просто удерживание веса. Оно включает контроль над всеми происходящими движениями и изменениями внутри вселенной. Это бесконечное задание выполняется через всемогущее Слово Господа, посредством которого начала существовать сама вселенная. Гравитация, «таинственная сила», которая и через четыреста лет исследований остается плохо изученной, является одним из проявлений этой потрясающей божественной заботы о вселенной.

Искажения времени и пространства и черные дыры

Общая теория относительности Эйнштейна рассматривает гравитацию не как силу, а как искривление самого пространства вблизи массивного объекта. Согласно предсказаниям, свет, который традиционно следует по прямым линиям, искривляется при прохождении по искривленному пространству. Впервые это было продемонстрировано, когда астроном сэр Артур Эддингтон обнаружил изменение кажущегося положения звезды во время полного затмения в 1919 году, считая, что лучи света изгибаются под действием силы тяжести солнца.

Общая теория относительности также предсказывает, что если тело достаточно плотное, его сила тяжести исказит пространство настолько сильно, что свет вообще не сможет через него проходить. Такое тело поглощает свет и все остальное, что захватила его сильная гравитация, и носит название Черная дыра. Такое тело можно обнаружить только по его гравитационным эффектам на другие объекты, по сильному искривлению света вокруг него и по сильной радиации, излучаемой веществом, которое на него падает.

Все вещество внутри черной дыры сжато в центре, который имеет бесконечную плотность. «Размер» дыры определяется горизонтом событий, т.е. границей, которая окружает центр черной дыры, и ничто (даже свет) не может выйти за ее пределы. Радиус дыры называется радиусом Шварцшильда, в честь немецкого астронома Карла Шварцшильда (1873–1916), и вычисляется по формуле R S = 2GM/c 2 , где c – это скорость света в вакууме. Если бы солнце попало в черную дыру, его радиус Шварцшильда составлял бы всего 3 км.

Существует надежное доказательство, что после того, как ядерное топливо массивной звезды иссякает, она больше не может противостоять коллапсу под своим собственным огромным весом и попадает в черную дыру. Считается, что черные дыры с массой в миллиарды солнц существуют в центрах галактик, включая нашу галактику, Млечный Путь. Многие ученые полагают, что суперяркие и очень отдаленные объекты под названием квазары, используют энергию, которая выделяется, когда вещество падает в черную дыру.

Согласно предсказаниям общей теории относительности, сила тяжести также искажает и время. Это также было подтверждено очень точными атомными часами, которые на уровне моря идут на несколько микросекунд медленнее, чем на территориях выше уровня моря, где сила тяжести Земли немного слабее. Вблизи горизонта событий это явление более заметно. Если наблюдать за часами астронавта, который приближается к горизонту событий, мы увидим, что часы идут медленнее. Находясь в горизонте событий, часы остановятся, но мы никогда не сможем этого увидеть. И наоборот, астронавт не заметит, что его часы идут медленнее, но он увидит, что наши часы идут быстрее и быстрее.

Основной опасностью для астронавта возле черной дыры были бы приливные силы, вызванные тем, что сила тяжести сильнее на тех частях тела, которые находятся ближе к черной дыре, чем на частях дальше от нее. По своей мощи приливные силы возле черной дыры, имеющей массу звезды, сильнее любого урагана и запросто разрывают на мелкие кусочки все, что им попадается. Однако, тогда как гравитационное притяжение уменьшается с квадратом расстояния (1/r 2), приливно-отливное явление уменьшается с кубом расстояния (1/r 3). Поэтому в отличие от принятого мнения, гравитационная сила (включая приливную силу) на горизонтах событий больших черных дыр слабее, чем на маленьких черных дырах. Так что приливные силы на горизонте событий черной дыры в наблюдаемом космосе, были бы менее заметны, чем самый мягкий ветерок.

Растяжение времени под действием силы тяжести вблизи горизонта событий является основой новой космологической модели физика-креациониста, доктора Рассела Хамфриса, о которой он рассказывает в своей книге «Свет звезд и время». Эта модель, возможно, помогает решить проблему того, как мы можем видеть свет отдаленных звезд в молодой вселенной. К тому же на сегодня она является научной альтернативой небиблейской , которая основывается на философских предположениях, выходящих за рамки науки.

Примечание

Гравитация, «таинственная сила», которая и через четыреста лет исследований остается плохо изученной…

Исаак Ньютон (1642–1727)

Фотография: Wikipedia.org

Исаак Ньютон (1642–1727)

Исаак Ньютон опубликовал свои открытия о гравитации и движении небесных тел в 1687 году, в своей известной работе «Математические начала ». Некоторые читатели быстро сделали вывод, что вселенная Ньютона не оставила места для Бога, так как все теперь можно объяснить с помощью уравнений. Но Ньютон совсем так не думал, о чем он и сказал во втором издании этой известной работы:

«Наша наиболее прекрасная солнечная система, планеты и кометы могут быть результатом только плана и господства разумного и сильного существа».

Исаак Ньютон был не только ученым. Помимо науки он почти всю свою жизнь посвятил исследованию Библии. Его любимыми библейскими книгами были: книга Даниила и книга Откровение, в которых описываются Божьи планы на будущее. На самом деле Ньютон написал больше теологических работ, чем научных.

Ньютон уважительно относился к другим ученым, таким как Галилео Галилей. Кстати Ньютон родился в то же год, когда умер Галилей, в 1642 году. Ньютон писал в своем письме: «Если я и видел дальше других, то потому, что стоял на плечах гигантов». Незадолго до смерти, наверное, размышляя о тайне силы тяжести, Ньютон скромно писал: «Не знаю, как меня воспринимает мир, но сам себе я кажусь только мальчиком, играющим на морском берегу, который развлекается тем, что время от времени отыскивает камешек более пестрый, чем другие, или красивую ракушку, в то время как передо мной расстилается огромный океан неисследованной истины».

Ньютон похоронен в Вестминстерском аббатстве. Латинская надпись на его могиле заканчивается словами: «Пусть смертные радуются, что среди них жило такое украшение человеческого рода» .

Наука

Здесь, на Земле, мы воспринимаем гравитацию как должное. Однако, сила притяжения, с помощью которой объекты тянутся друг к другу пропорционально своей массе – это намного больше, чем упавшее яблоко на голову Ньютона. Ниже представлены самые странные факты об этой универсальной силе.

Все дело в нашей голове

Сила притяжения – это явление постоянное и последовательное, однако наше восприятие этой силы таковым не является. По данным исследования, опубликованного в апреле 2011 года в журнале PLoS ONE, человек в состоянии дать более точное суждение о падающих объектах при сидячем положении тела.

Исследователи пришли к выводу, что наше восприятие силы тяжести меньше основано на реальном визуальном направлении силы, а больше на "ориентации" тела.

Полученные результаты могут привести к созданию новой стратегии, которая помогла бы астронавтам справляться с микрогравитацией в космосе.


Жесткий спуск на землю

Опыт космонавтов показал, что переход от состояния невесомости и обратно может быть очень тяжелым для организма человека. В отсутствии силы тяжести, мышцы начинают атрофироваться, при этом кости тоже начинают терять костную массу. По данным НАСА, астронавты могут терять до 1 процента своей костной массы в месяц.

По возвращении на землю, организмам и умам астронавтов необходим некоторый период времени для того, чтобы восстановиться. Кровяное давление, которое в космосе во всем теле становится одинаковым, должно вернуться в нормальное русло функционирования, при котором хорошо работает сердце, и мозг получает достаточное количество пищи.

Иногда на астронавтов перестройка организма действует крайне тяжело, причем как в физическом плане (неоднократны падения в обморок и т.д.), так и в эмоциональном. К примеру, один астронавт рассказывал, как по возвращению из космоса разбил дома бутылочку с лосьоном после бритья, поскольку забыл, что отпустив ее в воздух, она упадет и разобьется, а не будет парить в нем.


Чтобы потерять вес, "попробуйте Плутон"

На этой карликовой планете, человек, весом 68 килограммов, будет весить не более 4,5 кг.

При этом, с другой стороны, на планете с самым высоким уровнем силы тяжести, Юпитере, тот же человек будет весить около 160,5 кг.

Человек наверняка также и на Марсе почувствует себя пушинкой, поскольку сила притяжения на этой планете составляет всего лишь 38 процентов от той, которая есть на земле, то есть 68-килограммовый человек будет чувствовать, насколько легка его походка, так как весить он будет всего лишь 26 кг.


Разная гравитация

Даже на земле гравитация не везде одинаковая. Из-за того, что форма земного шара – это не идеальная сфера, его масса распределяется неравномерно. Следовательно, неравномерная масса означает неравномерную силу тяжести.

Одна таинственная гравитационная аномалия наблюдается в Гудзоновом заливе в Канаде. В этом регионе сила притяжения ниже, чем в других, а исследование 2007 года выявило причину – таяние ледников.

Лед, который однажды уже покрыл эту область во времена последнего ледникового периода, уже давно растаял, но Земля полностью не избавилась от этого бремени. Так как сила тяжести области пропорциональна массе этого региона, а "ледниковый след" оттеснил некоторую часть массы земли, гравитация стала здесь слабее. Незначительная деформация коры объясняет 25-45 процентов необычайно низкой гравитационной силы, помимо прочего, в этом также "обвиняют" движение магмы в мантии Земли.


Без гравитации некоторые вирусы были бы сильнее

Плохие новости для космических кадетов: некоторые бактерии становятся невыносимыми в космосе.

При отсутствии силы тяжести, у бактерий изменяется, по меньшей мере, активность 167 генов и 73 белков.

Мыши, которые поели пищу с такими сальмонеллами, заболели намного быстрее.

Другими словами, опасность заражения не обязательно приходит из космоса, более вероятно, что наши собственные бактерии набираются сил для атаки.


Черные дыры в центре галактики

Названные таким образом потому что ничто, даже свет, не может избежать их притяжения, черные дыры являются одними из самых разрушительных объектов во Вселенной. В центре нашей галактики находится массивная черная дыра, массой в 3 миллиона солнц. Звучит устрашающе, не так ли? Однако, по данным специалистов Киотского университета, в настоящее время эта черная дыра "просто отдыхает".

На самом деле, черная дыра для нас, землян, не представляет опасности, поскольку она находится очень далеко и ведет себя крайне спокойно. Однако, в 2008 году сообщалось, что около 300 лет назад эта дыра отправляла вспышки энергии. В другом исследовании, опубликованном в 2007 году, выяснилось, что несколько тысяч лет назад "галактическая икота" отправила небольшое количество вещества, размером с Меркурий в эту самую дыру, что привело к мощному взрыву.

Данная черная дыра, названная Стрелец А*, имеет относительно размытые формы по сравнению с другими черными дырами. "Эта слабость означает, что звезды и газ редко приближаются к черной дыре на небезопасное расстояние", - говорит Фредерик Баганоф (Frederick Baganoff), научный сотрудник Массачусетского технологического института. "Огромный аппетит присутствует, но он не удовлетворяется".