Open
Close

Телескопы инфракрасного излучения. Физический энциклопедический словарь - рентгеновский телескоп Основные обсерватории и крупнейшие телескопы мира

Наземные наблюдения в окнах прозрачности проводятся с помощью обычных оптических телескопов и специальных ИК – телескопов. Специальные ИК – телескопы – обладают меньшим собственным излучением и снабжены осциллирующим вторичным зеркалом и устанавливаются в высокогорных районах. Четыре специальных ИК – телескопа установлены на вершине потухшего вулкана Мауна - Кеа. (Гавайские острова). На высоте 4200 м. над уровнем моря: французский с диаметром зеркала D = 375 см; английский, D = 360 см; телескоп Национального управления по астронавтике и освоению космического пространства США – НАСА, D = 300 cм; телескоп Гавайского университета, D = 224 cм.

Рентгеновские (ри) – телескопы

Детекторы РИ:

В 1978 г. на спутнике ХЕАО – Б (Эйнштейновская обсерватория) в США был запущен рентгеновский телескоп косого падения с разрешением 2ʺ. Получено несколько тысяч рентгеновских источников (до 1986 г.)

Гамма – телескопы.

В области мягкого гамма – излучения (ГИ), используется сцинтилляционный телескоп.

В области жесткого ГИ – телескоп с трековым детектором. Регистрируется траектория каждой заряженной частицы, образующейся при поглощении - фотонов. Детектором может быть искровая камера и дрейфовая камера. В искровой камере вдоль траектории частицы, ионизующей атомы, развивается искровой пробой. Цепочка искр воспроизводит траекторию частицы. В дрейфовой камере положение траектории определяется по времени дрейфа электронов от трека частицы до соседних электродов.

В области промежуточного ГИ – эффективность сцинтилляционных и трековых детекторов уменьшается.

В области сверхвысоких ГИ – по регистрации черенковского излучения, которое генерируется электронами и позитронами ливня частиц, сопровождающего поглощение фотона сверхвысокой энергии в атмосфере.

Примечание: Излучение Черенкова - Вавилова (1934 г.) – излучение электромагнитных волн носителем электрического заряда, движущимся со скоростью , превышающей фазовую «U » скорость электромагнитных волн в веществе. . Эффект Черенкова – Вавилова возникает, если n> 1;

Нейтринные телескопы

В СССР: на Кавказе в Баксанской нейтринной обсерватории; в соленой шахте в Артемовске на глубине 600 м водного эквивалента; в Италии, США.

Принцип регистрации: жидкие сцинтилляционные детекторы – регистрирует образовавшиеся позитроны, движение которых сопровождается вспышкой.

Основные обсерватории и крупнейшие телескопы мира

ОБСЕРВАТОРИЯ (от лат. observator - наблюдатель), специализированное научное учреждение, оборудованное для проведения астрономических, физических, метеорологических и т. п. исследований. В настоящее время в мире насчитывается более 500 обсерваторий, причем большая часть в северном полушарии Земли.

Таблица 2. Основные обсерватории мира.

Обсерватория

Краткая информация

Абастуманская астрофизическая обсерватория

Основана в 1932г на горе Канобили (1650м) вблизи Абастумани в Грузии. В 1937г начинаются наблюдения на первом советском 33-см рефлекторе (велись наблюдения на нем с 1932г в старой башне) с первым советским фотометром. Первым директором был Евгений Кириллович Харадзе. В начале 50-х годов был установлен 70-см менисковый телескоп и другие приборы. В 1980г установлен самый крупный в обсерватории 125-см полностью автоматизированный зеркальный телескоп.

Алгонкинская обсерватория

Астрономическая радиообсерватория в провинции Онтарио (Канада). Основной прибор - 46-метровый телескоп с полностью управляемой антенной.

Аллегейнская обсерватория

Научно-исследовательская обсерватория Питтсбургского университета в штате Пенсильвания (США). Современные здания обсерватории построены в 1912г, но работы по ее созданию были начаты в 1858г несколькими питтсбургскими бизнесменами. Воодушевленные зрелищем кометы Донати, явившейся в том году, они сформировали Ассоциацию Аллегейнского телескопа и приобрели 33-сантиметровый рефрактор. В 1867г и телескоп, и обсерватория были переданы Западному университету штата Пенсильвания, предшественнику Питтсбургского университета. Первым штатным руководителем стал СэмюэлПьерпонт Лэнгли, которого сменил Джеймс Э. Килер, один из основателей Астрофизического журнала, а впоследствии - руководитель Обсерватории Лика. В 1912г в здании обсерватории было установлено три телескопа. Самый первый 33-сантиметровый рефрактор используется сейчас прежде всего для образовательных целей и для тестирования. Два других (76- сантиметровый рефрактор Тау и 79-сантиметровый Мемориальный рефлектор Килера) продолжают использоваться для научных исследований.

Англо-Австралийская обсерватория (AAO)

Обсерватория, расположенная вместе с Обсерваторией Сайдинг-Спринг (штат Новый Южный Уэльс, Австралия), финансируемая совместно правительствами Австралии и Великобритании. Обсерватория управляется Дирекцией Англо-Австралийского телескопа (ДААТ), которая была образована в начале 1970-х гг., когда был построен 3,9-метровый Англо-Австралийский телескоп с экваториальной установкой. Плановые наблюдения начались в 1975 г. Это был первый телескоп с компьютерным управлением. Вместе с этим универсальным телескопом используется множество различных приборов, что привело к важным научным открытиям и позволило получить эффектные фотографии южного неба.В 1988 г. ДAAT получила в свое распоряжение английский 1,2-метровый телескоп Шмидта (введен в действие в 1973г и в течение некоторого времени находился в ведении Королевской Эдинбургской обсерватории), который стал использоваться многими астрономами. Популярные телескопы Шмидта позволяют получать высококачественные широкоформатные фотографии (6,4° × 6,4°). Большая часть времени работы телескопа отводится долговременным обзорам неба.

Аресибская обсерватория

Радиоастрономическая обсерватория в Пуэрто-Рико. Котлован диаметром в 305 м удачно вписался в естественную складку холмистой местности к югу от г. Аресибо. Телескоп, постройка которого была закончена в 1963г, эксплуатируется Национальным ионосферным и астрономическим центром Корнеллского университета (США). Отражающая поверхность перемещаться не может, но радиоисточники могут отслеживаться посредством перемещения приемника в фокусе вдоль специальной поддерживающей конструкции. В 1997г была проведена модернизация этого телескопа. По занимаемой площади телескоп превосходит все другие радиотелескопы в мире вместе взятые. Имея столь большую поверхность, телескоп может обнаруживать более слабые сигналы, чем любой другой радиотелескоп

Астрофизическая обсерватория Доминиона

Обсерватория Национального исследовательского совета Канадского центра оптической астрономии, расположенная вблизи г. Виктория (провинция Британская Колумбия). Составляет часть Института астрофизики им. Герцберга. Она была основанаДж.С. Пласкеттом, и в 1918г там начал функционировать 1,85-метровый телескоп, к которому в 1962г был добавлен 1,2-метровый телескоп. В 1988г там же создан Канадский центр астрономических данных.

Военно-морская обсерватория Соединенных Штатов

Обсерватории принадлежат астрографические телескопы, расположенные в горах Андерсон, около Флэгстаффа, штат Аризона, в БлэкБерч, Новая Зеландия, и в Вашингтоне. Обсерватория была основана в 1830г и получила свое нынешнее название в 1842г. В течение пятидесяти лет она была расположена в том месте, где теперь находится Мемориал Линкольна. В 1893г обсерватория была перемещена в нынешнее место расположения (рядом с официальной резиденцией Вице-президента). Самый большой телескоп, размещенный здесь, - 66-сантиметровый рефрактор, работающий с 1873г, с помощью которого в 1877г Асаф Холл открыл спутники Марса Фобос и Деймос. В число других инструментов входит 30-сантиметровый Рефрактор Элвана Кларка, два 61-сантиметровых рефлектора и 15-сантиметровый меридианный круг. Самый большой телескоп, принадлежащий обсерватории, - 1,5-метровый астрометрический рефлектор во Флэгстаффе. Используя этот инструмент, Джеймс Кристи в 1978г открыл спутник Плутона Харон. В своем филиале в Аризоне обсерватория имеет оптический интерферометр, (Опытный морской оптический интерферометр), который в 1995г при вводе в действие был самым большим телескопом такого типа. В Военно-морской обсерватории США находится одна из наиболее богатых астрономических библиотек мира. Обсерватория составляет и издает астрономические ежегодники для флота, авиации и международный справочник "Видимые места фундаментальных звезд".

Высокогорная обсерватория

Солнечная физическая обсерватория и научно-исследовательский институт в штате Колорадо, США. Основана в 1940г под эгидой Обсерватории Гарвардского колледжа и теперь является отделением Национального центра атмосферных исследований. Аппаратура по изучению Солнца размещается также в других наземных центрах и на спутниках.

Главная астрономическая обсерватория АН Украины

Основана в 1944г (в 12км к югу от Киева, h=180м над уровнем моря). Открыта в 1949г. Составлен сводный каталог координат нескольких тысяч опорных точек на видимой поверхности Луны.Имеет наблюдательную астрономическую базу в Приэльбрусье на пике Терскол (h=3100м) с 40-см, 80-см и 2 метровым телескопами. Основные инструменты: 19-см большой вертикальный круг, двойной широкоугольный 12-см астрограф, 70 см телескоп-рефлектор (1959г), 44-см солнечный горизонтальный телескоп (1965г) и другие приборы. Обсерватория с 1985г издает научный журнал «Кинематика и физика небесных тел», а с 1953г издавала «Известия ГАО АН УССР». Первым директором был Александр Яковлевич Орлов (1880-1954) в 1944-1948гг и 1950-1951гг.

Европейская южная обсерватория (ESO)

Европейская исследовательская организация основана в 1962г. Членами ESO являются восемь государств - Бельгия, Дания, Франция, Германия, Италия, Нидерланды, Швеция и Швейцария. Штаб-квартира организации находится в Гархинге под Мюнхеном в Германии, а обсерватория - в Ла-Силла в Чили.

Крымская астрофизическая обсерватория (КрАО)

Украинская обсерватория, расположенная в Крыму недалеко от Симеиза. Основана в 1908 около Симеиза, как отделение Пулковской обсерватории, но полностью разрушена с началом войны в 1941г. Постановлением Правительства СССР от 30.06.1945г преобразована в самостоятельное научное учреждение – Крымскую Астрофизическую обсерваторию АН СССР. В 1946г началось строительство обсерватории на новом, более удобном месте в селении Мангуш (пос. Научный, 12 км от Бахчисарая). Первым крупным инструментом был астрограф с 40 см объективом, установленный летом 1946г в Симеизме, в котором и продолжились наблюдения. Первым директором был Г.А. Шайн (1892-1956), затем в 1952г его сменил А. Б. Северный (1913-1987). Введена в строй в 1950г. Здесь в 1961г был установлен самый большой в Европе телескопе с зеркалом 264см, F=10м, в 1981г 125-см телескоп для фотографических наблюдений. Здесь также установлен в 1954г один из лучших в мире башенный солнечный телескоп, в 1966г мощный 22 метровый радиотелескоп миллиметрового диапазона.

Национальная радиоастрономическая обсерватория (NRAO)

Объединие организаций, ведущих в США работы по радиоастрономии под эгидой частного консорциума университетов АссошиэйтидЮниверситиз Инк. Объединение получает финансирование согласно соглашению консорциума с Национальным научным фондом США. Телескопы, используемые NRAO, расположены в трех различных местах. Это "Очень большая решетка" (VLA - Сокр. VeryLargeArray. Радиотелескоп, состоящий из 27 антенн, каждая 25 м в диаметре, работающий по методу синтеза апертур на основе земного вращения. Расположенный в Сокорро, штат Нью-Мексико, этот телескоп является самым большим в мире телескопом, использующим метод синтеза апертур. Этот массив антенн размещен в виде буквы "Y", каждое плечо которой имеет в длину 21 км. Антенны соединены между собой электронной связью, в результате чего массив работает как единая система из 351 радиоинтерферометра, которые проводят одновременные наблюдения. Максимальное доступное разрешение радиотелескопа на длине волны 1,3 см составляет 0,05 дуговых секунд. Однако на практике большинство наблюдений проводится на длине волны 6 см с разрешением в одну дуговую секунду, поскольку это очень сокращает время, необходимое для построения радиокарт), телескоп миллиметровых волн в Китт-Пик, а также 42-метровая антенна и интерферометр телескопа Грин-Бэнк, расположенные в Грин-Бэнк (штат Западная Виргиния, Построенная в 1962г 92- метровая параболическая антенна к 1988г полностью вышла из строя. Сооружение ее "преемника" - 100- метрового Телескопа завершено в 1998г. Это самая большая в мире параболическая антенна с полностью автоматизированным управлением. 43-метровая параболическая антенна, пущенная в 1965г, до сих пор является самым большим в мире телескопом с экваториальной установкой. Имеется также радиоинтерферометр, состоящий из трех 26-метровых параболических антенн, две из которых могут перемещаться по колее длиной 1,6 км). Администрация NRAO находится в Шарлоттсвилле (штат Виргиния)

Пулковская обсерватория

Обсерватория около г. Санкт-Петербурга в России, организованная еще в 1718г, как Петербургская обсерватория и Петербургская АН обладала единственной обсерваторией построенной в центре города в 1760г. В Пулково находится с 1835г. 19 августа 1839г на Пулковских высотах (75м над уровнем моря) вступает в строй Пулковская обсерватория. Строительство начато 21 июня 1835 года в 70км к югу от Петербурга по проекту А.П. Брюллова (1798-1877), разработанному в 1834г. 03.07.1835г заложено здание Главной обсерватории. 02.07.1838 - учреждение Пулковской обсерватории при Академии наук. История обсерватории связана, в частности, с историей семьи Струве, шесть членов которой стали известными астрономами. Василий Яковлевич Струве был директором обсерватории с 1839 по 1862г, а его сын Отто Васильевич Струве - c 1862 по 1889г, построивший в 1886г астрофизическую лабораторию, а в 1890-1895гг Ф. А. Бредихин усилив в обсерватории астрофизические исследования и дооборудовав соответствующими инструментами. Обсерватория стала «астрономической столицей мира» за создание точнейших звездных каталогов фундаментальных звезд: 1865г, 1885г, 1905г и 1930гг, точное измерение положения 8700 пар двойных звезд, определение основных астрономических постоянных. С самого начала в обсерватории состоял по тем временам крупнейший в мире 38см (15 дюймовый) телескоп- рефрактор, изготовленный учениками Й. Флаунгофера - Мерц и Малер, а в 1888г опять был поставлен крупнейший в мире 30 дюймовый (76см) телескоп- рефрактор, изготовленный американским оптиком А. Кларк. Именно в Пулковской обсерватории одной из первых в астрометрии начали применять фотографию. В 1920г организована служба точного времени, а в 1924г при обсерватории учрежден международный комитет службы времени. В 1932г организована служба Солнца. Здания того времени во время Второй мировой войны были разрушены, но впоследствии восстановлены в прежнем виде в 1954г. Открытие состоялось 21 мая 1954г. Обсерватория была значительно расширена и оборудована новейшими инструментами. Установлен 65см телескоп- рефрактор (F=10,4м) самый большой на территории СССР. Наблюдательные базы на Кавказе и Памире, Кисловодская горная астрономическая станция, в Благовещенске (на Амуре широтная лаборатория), экспедиция в Боливии (с 1983). Исследования: астрометрия, радиоастрономия, астрономическое приборостроение, внеатмосферная астрономия и др. Обсерватория издает «Труды» (с 1893г), «Известия» (с 1907г), «Солнечные данные» (с 1954г) и другие.

Рис 46. Пулковская обсерватория

Мы уже рассмотрели основные детекторы рентгеновского излучения: пропорциональные счетчики для энергий ниже и сцинтилляционные счетчики для энергий до Проблема заключается в необходимости исключить космические лучи, которые также вызывают ионизацию внутри счетчиков. С этой целью применяются три метода.

Первый метод состоит в использовании детекторов антисовпадений. В этом случае рентгеновские счетчики окружаются сцинтиллирующим веществом (пластическим сцинтиллятором, либо сцинтиллирующей жидкостью) и любые события, заставляющие сработать и счетчик, и сцинтиллирующее вещество, отбрасываются как вызванные заряженной частицей (рис. 7.10,а).

Второй метод состоит в анализе формы импульса электронов как функции времени. Быстрая частица, будь то низкоэнергичная частица космических лучей или быстрый электрон, выбитый из стенок счетчика такой частицей, создает ионизованный след, который вызывает широкий импульс на выходе. С другой стороны, фотон с энергией около приводит к локальной ионизации, и импульс в результате этого получается короткий, в особенности его передний фронт. Пробег электронов, выбитых космическими рентгеновскими лучами из атомов аргона, например, обычно меньше 0,132 см. Этот метод различения космических лучей и рентгеновского излучения называется дискриминацией по времени нарастания или по форме импульса (рис. 7.10, б и в).

Третий метод, применяемый для жестких рентгеновских и мягких -квантов, включает детекторы, получившие название слоистые фосфоры. Они состоят из слоев различных сцинтиллирующих материалов, имеющих различные эффективности регистрации фотонов и заряженных частиц. В качестве одного компонента подобной пары может служить детектор, изготовленный из йодистого цезия который чувствителен к фотонам и используется как стандартный сцинтилляционный счетчик фотонов, а другой компонент можно изготовить из пластического сдинтиллятора, который к Фотонам не чувствителен. Следовательно, фотоны дадут сигнал только в первом детекторе, тогда как заряженные честицы, проходящие через

Рис. 7.10. Различение рентгеновского излучения (б) и космических лучей (в) по времени нарастания (или по форме импульса).

детектор, вызывают световые вспышки в обоих материалах. Применяемые в слоистых фосфорах сцинтилляторы подбираются таким образом, утобы они имели различные времена высвечивания, поэтому заряженная частица, пронизывающая прибор, дает две световые вспышки, разделенные интервалом времени Фотон вызывает только одну вспышку, поэтому световые вспышки можно регистрировать одним фотоумножителем, подключенным к электронной системе, способной распознавать космические лучи по характерным признакам и исключать их. По интенсивности световой вспышки, вызванной фотоном, определяется его энергия, при этом для энергий, характерных для -излучения, можно достичь энергетического разрешения порядка 10% и лучше.

Необходимо ограничить поле зрения рентгеновского телескопа, что часто осуществляется с помощью механического коллиматора. В простейшем случае коллиматор состоит из полых трубок прямоугольного сечения. Диаграмма направленности такого коллиматора имеет вид треугольника, поскольку можно считать, что рентгеновское излучение распространяется прямолинейно, т.е. в соответствии с законами геометрической оптики. Единственное исключение составляет случай, когда пучок падает под большим углом к нормали на поверхность вещества высокой электропроводности, такого, как медь. Тогда может происходить отражение при скользящем падении. Для фотонов с энергией меньше - отражение наблюдается, когда угол между направлением луча и поверхностью материала не

Рис. 7.11. Схема простого рентгеновского телескопа. Телескопы такого типа устанавливались на спутниках «Ухуру» и «Ариэль-5».

превышает нескольких градусов. Этот процесс отражения сходен с отклонением радиоволн в ионизованной плазме, в которой плазменная частота возрастает с глубиной. Хотя отражение происходит только при очень малых углах, этого достаточно, чтобы разрабатывать телескопы с зеркалами косого падения, дающие в фокальной плоскости изображение неба (п. 7.3.2).

Итак, можно собрать простой рентгеновский телескоп по схеме, показанной на рис. 7.11. Еще раз отметим, что существенную роль играют современные электронные схемы амплитудных анализаторов, дискриминаторов и схем антисовпадений, которые следует включать в такие телескопы. Такого типа телескопы с большим успехом работали на борту орбитальной рентгеновской обсерватории «Ухуру».

7.3.1. Рентгеновский спутник «ухуру». Рентгеновский спутник «Ухуру» был запущен с побережья Кении в декабре 1970 г. Научная аппаратура, установленная на спутнике, включала два пропорциональных счетчика с бериллиевыми окнами, полезная площадь каждого из них составляла Они были направлены в противоположные стороны перпендикулярно оси вращения и были снабжены механическими коллиматорами, которые ограничивали поле зрения (полная ширина на половине высоты) (рис. 7.12). Период вращения спутника вокруг своей оси составлял 10 мин. Пропорциональные счетчики были чувствительны в области

Чувствительность телескопа. Предел чувствительности телескопа определялся фоновым излучением. Существуют два вида фонового излучения.

1. Число отсчетов в секунду связанное с недостаточным исключением -квантов и космических лучей. Это значение меняется от телескопа к телескопу и для детекторов на борту «Ухуру» оно составляло около

2. Космическое рентгеновское фоновое излучение, яркость которого очень велика Это фоновое излучение изотропно; предполагается, что оно имеет космологическое происхождение. Размерность в энергетическом диапазоне телескопа. Предел чувствительности телескопа определяется статистически. Если принять в качестве критерия обнаружения дискретного рентгеновского источника сигнал, по крайней мере в три раза

Рис. 7.12. Рентгеновский спутник «Ухуру». а - расположение приборов; б - ориентация рентгеновского телескопа .

превышающий стандартное отклонение, связанное с шумом (в данном случае статистический шум), то можно показать, что слабейший точечный рентгеновский источник, доступный обнаружению, должен иметь плотность потока

где телесный угол, равный углу зрения телескопа, время наблюдения источника. Рентгеновское фоновое излучение в области энергий равно и имеет спектр интенсивности, приближенно описываемый соотношением где измеряется в Можно использовать эти данные, чтобы показать, что для коллиматора фоновое излучение обоих типов приблизительно одинаково, тогда как для меньшего поля зрения важен только фон, обусловленный заряженными частицами. Космическое рентгеновское фоновое излучение, как источник шума, становится несущественным, если поле зрения меньше нескольких градусов.

В обычном режиме спутник сканирует одну полосу неба на протяжении многих витков. Попробуйте вычислить слабейший обнаружимый источник за один день наблюдений и сравнить его с действительным пределом «Ухуру» по плотности потока, взятым из каталогов «Ухуру», «Ухуру» в диапазоне Сколько времени надо было сканировать все небо, чтобы добиться такого уровня чувствительности?

Временные вариации. Наиболее выдающимся открытием, сделанным с помощью «Ухуру» были пульсирующие рентгеновские источники. Телескоп

Рис. 7.13. Фрагмент регистрации данных для источника Гистограмма показывает число отсчетов в последовательных -секундных бинах. Непрерывная линия - гармоническая кривая, лучше всего аппроксимирующая результаты наблюдений с учетом изменяющейся чувствительности телескопа при сканировании источника .

с коллиматором регистрировал и каждые 0,096 с передавал на Землю данные о рентгеновском потоке. Средняя плотность потока от источника равна а период 1,24 с. Насколько источник превышал уровень шума, когда были обнаружены его пульсации? Оказывается, в течение периода сигнал источника не сильно превышал уровень шума, но использование методов фурье-анализа (или спектра мощности), если его применить для обработки данных за более продолжительное время, позволяет открыть пульсации значительно меньшей интенсивности. Фрагмент записи показан на рис. 7.13.

7.3.2. Эйнштейновская рентгеновская обсерватория. Самые значительные достижения после наблюдений «Ухуру», вызвавших переворот в рентгеновской астрономии, связаны с полетом рентгеновского спутника называемого также «Эйнштейновской рентгеновской обсерваторией». На борту этой обсерватории было много уникальной аппаратуры, в том числе телескоп косого падения, строящий изображение с высоким угловым разрешением.

Рентгеновские лучи отражаются только от поверхности проводящих материалов при больших углах падения. При энергиях отражений происходит, если угол между поверхностью и направлением падения излучения порядка нескольких градусов; чем больше энергия фотонов, тем меньше должен быть этот угол. Поэтому, чтобы сфокусировать рентгеновские лучи от небесного источника, нужен параболический отражатель с

Рис. 7.14. Фокусировка рентгеновского пучка с помощью комбинации параболического и гиперболического зеркал косого падения. Эта комбинация использована на эйнштейновской рентгеновской обсерватории .

очень большим фокусным расстоянием, причем центральная часть отражателя может не использоваться. Фокусное расстояние телескопа можно уменьшить за счет площади собирающей поверхности, если ввести еще одно собирающее зеркало, при этом предпочтительная конфигурация - комбинация параболоида и гиперболоида (рис. 7.14.) Такая система фокусирует рентгеновские лучи, упавшие только на кольцевую область, показанную на рисунке. Чтобы увеличить собирающую площадь, можно использовать комбинацию из нескольких зеркал. Такая система использовалась в телескопе высокого разрушения HRI, установленном на борту эйнштейновской обсерватории. Она позволяла получать изображение небесной сферы в поле зрения диаметром 25, причем угловое разрушение было лучше в радиусе 5 от центра поля зрения.

В фокальной плоскости следует поместить двухкоординатный детектор с таким же угловым разрешением, как у телескопа. В HRI он состоит из двух микроканальных пластин, установленных друг за другом. Эти детекторы представпяют собой набор очень тонких трубочек, вдоль которых поддерживается высокая разность потенциалов. Электрон, попавший на один конец трубочки, начинает ускоряться и, соударяясь со стенками, выбивает дополнительные электроны, которые в свою очередь ускоряются и также выбивают электроны и т.д. Как и в пропорциональном счетчике, Цель этого процесса - получить от единичного электрона интенсивную электронную вспышку. В HRI передняя поверхность первой микроканальной пластины покрыта Рентгеновский фотон, упавший на переднюю поверхность, выбивает электрон, что приводит к возникновению электронов, регистрируемых на выходе второй пластины. Эта вспышка электронов регистрируется зарядовым детектором с взаимно перпендикулярными сетками, что позволяет точно измерить координаты рентгеновского кванта.

Чтобы определить чувствительность телескопа, нужно знать его эффективную площадь и уровень фоновых сигналов детектора. Поскольку отражение при скользящем падении является функцией энергии фотонов и поскольку имеет место поглощение в материале окна детектора, эффективная

Рис. 7.15. Эффективная площадь телескопа, строящего изображение с высоким разрешением, как функция энергии. Кривые показывают влияние установки перед детектором бериллиевого и алюминиевого фильтров .

площадь сильно зависит от энергии (рис. 7.15). Как и ожидалось, максимальная эффективная площадь соответствует энергиям около и равна примерно Отклик детектора можно изменять, вводя в поле зрения телескопа фильтры (рис. 7.15), таким образом обеспечивается грубое энергетическое разрешение.

Уровень шума в детекторе, в основном обусловленный заряженными частицами, достигает Это означает, что источник каталога «Ухуру» на пределе чувствительности, т.е. точечный источник с плотностью потока порядка единиц «Ухуру» в диапазоне может быть обнаружен на уровне 5 о при экспозиции 50 000 с.

Чтобы в полной мере использовать высокое качество зеркал телескопа, космический аппарат пришлось бы стабилизировать с точностью - Однако такие попытки не предпринимались. Наведение телескопа осуществляется гораздо более грубо, зато в любой момент точно определяется его мгновенная ориентация относительно стандартных ярких звезд. Поэтому, как только наблюдения заканчиваются, карта неба восстанавливается с полным угловым разрешением, которым обладает телескоп. Пример качества изображений, получаемых с помощью HRI, показан на рис. 7.16.

На Эйнштейновской обсерватории были установлены также следующие инструменты.

Рис. 7.16. (см. скан) Рентгеновское изображение остатка сверхновой полученное с помощью телескопа высокого разрешения эйштейновской обсерватории. Каждый элемент изображения имеет размеры время экспозиции равно 32 519 с .

Рис. 7.17. Общая схема расположения приборов на борту Эйнштейновской рентгеновской обсерватории .

1 - козырек, 2 - передний преколлиматор, 3 - система зеркал, 4 - задний преколлиматор, 5 - дифракционный спектрометр, 6 - широкополосный спектрометр с фильтрами, 7 - фокальный кристаллический спектрометр, 8 - отображающий детектор высокрго напряжения, 9 - задняя изолирующая опора, 10 - твердотельный спектрометр, 11 -многоканальный пропорциональный счетчик, 12 - блоки электронной аппаратуры, 13 - оптическая скамья, 14 - передняя изолирующая опора, 15 - контрольный пропорциональный счетчик, 16 - тепловой коллиматор контрольного пропорционального счетчика, 17 - бленды датчиков ориентации.

положительное число, в - угол падения, расстояние между отражающими кристаллографическими плоскостями. Рентгеновские лучи проходят через фокус и, образовав расходящийся пучок, падают на кристалл. Кристалл искривлен так, что отраженное рентгеновское излучение фокусируется на позиционно-чувствительном пропорциональном детекторе. При энергиях энергетическое разрешение его порядка 100-1000, а эффективная площадь составляет около обсерватории в одном параграфе. Основные достижения первого года наблюдений следующие: обнаружение рентгеновского излучения у звезд всех классов светимости, включая все звезды главной последовательности, сверхгиганты и белые карлики; открытие более 80 источников в туманности Андромеды и такого же числа в Магеллановых Облаках; изображения с высоким разрешением в рентгеновском диапазоне скоплений галактик, выявляющие обширный диапазон различных процессов, приводящих к эмиссии рентгеновского излучения; обнаружение рентгеновского излучения от многих квазаров и активных галактик; регистрация источников с плотностью потока в 1000 раз слабее, чем слабейшие источники каталога «Ухуру». Наблюдения, проведенные с Эйнштейновской обсерватории, существенным образом повлияли на все области астрономии. (Значительная часть первых результатов наблюдений Эйнштейновской обсерватории опубликована в Astrophys. J., 234, No. 1, Pt. 2, 1979.)

Оптическая схема

Из-за большой энергии рентгеновские кванты практически не преломляются в веществе (следовательно, тяжело изготовить линзы) и не отражаются при любых углах падения, кроме самых пологих (около 90 градусов).

Рентгеновские телескопы могут использовать несколько методов для фокусирования лучей. Наиболее часто используются телескопы Вольтера (с зеркалами скользящего падения), кодирование апертуры и модуляционные (качающиеся) коллиматоры. Ограниченные возможности рентгеновской оптики приводят к более узкому полю зрения по сравнению с телескопами, работающими в диапазонах УФ и видимого света .

Зеркала

Использование рентгеновских зеркал для внесолнечной астрономии требует одновременно:

  • возможность определить исходное направление рентгеновского фотона по двум координатам и
  • достаточную эффективность детектирования.

Зеркала могут быть изготовлены из керамики или металлической фольги. Наиболее часто для рентгеновских зеркал скользящего падения используются золото и иридий . Критический угол отражения сильно зависит от энергии фотонов. Для золота и энергии в 1 кэВ, критический угол составляет 3,72 °.

Кодирование апертуры

Многие рентгеновские телескопы используют кодирование апертуры для получения изображений. В этой технологии перед матричным детектором устанавливается маска в виде решетки из чередующихся особым образом прозрачных и непрозрачных элементов (например, квадратная маска в виде матрицы Адамара). Данный элемент для фокусировки и получения изображений весит меньше, чем другие варианты рентгеновской оптики (поэтому часто используется на спутниках), но при этом требует большей пост-обработки для получения изображения.

Диапазоны энергий

Телескопы

Exosat

На борту Exosat размещено два низкоэнергетических рентгеновских телескопа типа Wolter I с возможностью получения изображений. В фокальной плоскости могут быть установлены

Телескопы жёсткого рентгеновского диапазона

См. OSO 7 (англ. OSO 7 )

На борту Седьмой орбитальной солнечной обсерватории (OSO 7) находился рентгеновский телескоп жёсткого диапазона. Характеристики: диапазон энергий 7 - 550 кэВ, поле зрения 6,5° эффективная площадь ~64 см²

Телескоп ФИЛИН

Телескоп ФИЛИН, установленный на станции Салют-4 , состоял из трёх газовых пропорциональных счётчиков с общей рабочей площадью 450 см², диапазон энергий 2-10 кэВ, и одного с рабочей площадью 37 см², диапазон энергий 0,2-2 кэВ. Поле зрения ограничено щелевым коллиматором полушириной 3° x 10°. Инструменты включают фотоэлементы, смонтированные вне станции вместе с датчиками. Измерительные модули и питание расположены внутри станции.

Калибровка датчиков по наземным источникам производилась параллельно с полётными операциями в трёх режимах: инерциальная ориентация, орбитальная ориентация и обзор. Данные собирались в четырёх энергетических диапазонах: 2-3,1 кэВ, 3,1-5,9 кэВ, 5,9-9,6 кэВ и 2-9,6 кэВ на больших детекторах. Малый датчик имеет ограничители, устанавливаемые на уровни 0,2, 0,55, 0,95 кэВ.

Телескоп SIGMA

Телескоп жесткого рентгеновского и низкоэнергетического гамма-диапазона SIGMA покрывает диапазон 35-1300 кэВ с эффективной площадью 800 см² и полем зрения максимальной чувствительности ~5° × 5°. Максимальное угловое разрешение 15 минут дуги Энергетическое разрешение - 8 % при 511 кэВ. Благодаря сочетанию кодирующей апертуры и позиционно-чувствительных датчиков на основе принципов камеры Ангера, телескоп способен строить изображения.

Рентгеновский телескоп АРТ-П

Фокусирующий рентгеновский телескоп

См. Broad Band X-ray Telescope (англ. Broad Band X-ray Telescope ) и STS-35

Широкополосный рентгеновский телескоп (BBXRT) был выведен на орбиту шаттлом Колумбия (STS-35) как часть полезной нагрузки ASTRO-1. BBXRT был первым фокусирующим телескопом, действующим в широком энергетическом диапазоне 0,3-12 кэВ со средним энергетическим разрешением 90 эВ при 1 кэВ и 150 эВ при 6 кэВ. Два сонаправленных телескопа с сегментированным твердотельным спектрометром Si(Li) каждый (детекторы A и B), состоящим из пяти пикселей. Общее поле зрения 17.4’ в диаметре, поле зрения центрального пикселя 4’ в диаметре. Общая площадь: 765 см² при 1,5 кэВ, 300 см² при 7 кэВ.

HEAO-2

Первая в мире орбитальная обсерватория с зеркалами с скользящим отражением рентгеновских фотонов. Запущена в 1978 году. Эффективная площадь около 400 кв.см на энергии 0.25 кэВ и около 30 кв.см на энергии 4 кэВ.

Чандра

XRT на КА Swift (миссия MIDEX)

Труба телескопа диаметром 508 мм сделана из двух секций графитовых волокон и циановых эфиров. Внешний слой из графитовых волокон создан уменьшить продольный коэффициент теплового расширения, тогда как внутренняя сложная труба облицована изнутри парозащитным барьером (vapor barrier) из алюминиевой фольги от проникновения внутрь телескопа водяных паров или эпоксидных загрязнителей. XRT содержит переднюю часть, окружённую зеркалами и держащую затворную сборку и астронавигационный блок, и заднюю, держащую камеру фокальной плоскости (focal plane camera) и внутренний оптический экран.

Зеркальный модуль содержит 12 вложенных зеркал скользящего падения типа Wolter I, закреплённых на передних и задних крестовинах. Пассивно нагреваемые зеркала - позолоченные никелевые оболочки длиной 600 мм и диаметром от 191 до 300 мм.

X-ray imager имеет эффективную площадь 120 см2 на 1,15 кэВ, поле зрения 23,6 x 23,6 угловых минут и угловое разрешение (θ) 18 секунд дуги на диаметре половинной мощности (HPD, half-power diameter). Чувствительность детектора - 2·10 −14 эрг см −2 с −1 10 4 секунд. Функция рассеяния точки (PSF, point spread function) зеркала - 15 секунд дуги HPD в фокусе (1,5 кэВ). Зеркало слегка расфокусировано для более равномерной PSF по всему полю зрения, как следствие, PSF инструмента 18 секунд дуги.

Рентгеновский телескоп нормального падения

История рентгеновских телескопов

Первый рентгеновский телескоп использовался для наблюдений за Солнцем. Первое изображение Солнца в рентгеновском спектре было получено в 1963 году, при помощи телескопа, установленного на ракете.

Примечания

См. также

  • Список космических аппаратов с рентгеновскими и гамма-детекторами на борту

Wikimedia Foundation . 2010 .

Рентгеновский телескоп-- телескоп, предназначенный для наблюдения удаленных объектов в рентгеновском спектре. Для работы таких телескопов обычно требуется поднять их над атмосферой Земли, непрозрачной для рентгеновских лучей. Поэтому телескопы размещают на высотных ракетах или на ИСЗ.

Оптическая схема

Из-за большой энергии рентгеновские кванты практически не преломляются в веществе (следовательно, тяжело изготовить линзы) и не отражаются при любых углах падения, кроме самых пологих (около 90 градусов).

Рентгеновские телескопы могут использовать несколько методов для фокусирования лучей. Наиболее часто используются телескопы Вольтера (с зеркалами скользящего падения), кодирование апертуры и модуляционные (качающиеся) коллиматоры.

Ограниченные возможности рентгеновской оптики приводят к более узкому полю зрения по сравнению с телескопами, работающими в диапазонах УФ и видимого света.

История

Часто изобретение первого телескопа приписывают Гансу Липпершлею из Голландии, 1570-1619 годы, однако почти наверняка он не являлся первооткрывателем. Скорее всего, его заслуга в том, что он первый сделал новый прибор телескоп популярным и востребованным. А также именно он подал в 1608 году заявку на патент на пару линз, размещенный в трубке. Он назвал устройство подзорной трубой. Однако его патент был отклонен, поскольку его устройство показалось слишком простым.

Задолго до него Томас Диггес, астроном, в 1450 году попытался увеличить звезды с помощью выпуклой линзы и вогнутого зеркала. Однако у него не хватило терпения доработать устройство, и полу-изобретение вскоре было благополучно забыто. Сегодня Диггеса помнят за описание гелиоцентрической системы.

К концу 1609 года небольшие подзорные трубы, благодаря Липпершлею, стали распространены по всей Франции и Италии. В августе 1609 года Томас Харриот доработал и усовершенствовал изобретение, что позволило астрономам рассмотреть кратеры и горы на Луне.

Большой прорыв произошел, когда итальянский математик Галилео Галилей узнал о попытке голландца запатентовать линзовую трубу. Вдохновленный открытием, Галлей решил сделать такой прибор для себя. В августе 1609 года именно Галилео изготовил первый в мире полноценный телескоп. Сначала, это была всего лишь зрительная труба - комбинация очковых линз, сегодня бы ее назвали рефрактор. До Галилео, скорее всего, мало кто догадался использовать на пользу астрономии эту развлекательную трубку. Благодаря прибору, сам Галилей открыл горы и кратеры на Луне, доказал сферичность Луны, открыл четыре спутника Юпитера, кольца Сатурна и сделал множество других полезных открытий.

Сегодняшнему человеку телескоп Галилео не покажется особенным, любой десятилетний ребенок может легко собрать гораздо лучший прибор с использованием современных линз. Но телескоп Галилео был единственным реальным работоспособным телескопом на тот день с 20-кртным увеличением, но с маленьким полем зрения, немного размытым изображением и другими недостатками. Именно Галилео открыл век рефрактора в астрономии - 17 век.

Время и развитие науки позволяло создавать более мощные телескопы, которые давали видеть много больше. Астрономы начали использовать объективы с большим фокусным расстоянием. Сами телескопы превратились в большие неподъемные трубы по размеру и, конечно, были не удобны в использовании. Тогда для них изобрели штативы. Телескопы постепенно улучшали, дорабатывали. Однако его максимальный диаметр не превышал нескольких сантиметров - не удавалось изготавливать линзы большого размера.

К 1656 году Христиан Гюйенс сделал телескоп, увеличивающий в 100 раз наблюдаемые объекты, размер его был более 7 метров, апертура около 150 мм. Этот телескоп уже относят к уровню сегодняшних любительских телескопов для начинающих. К 1670-х годам был построен уже 45-метровый телескоп, который еще больше увеличивал объекты и давал больший угол зрения.

Но даже обычный ветер мог служить препятствием для получения четкого и качественного изображения. Телескоп стал расти в длину. Первооткрыватели, пытаясь выжать максимум из этого прибора, опирались на открытый ими оптический закон - уменьшение хроматической аберрации линзы происходит с увеличением ее фокусного расстояния. Чтобы убрать хроматические помехи, исследователи делали телескопы самой невероятной длины. Эти трубы, которые назвали тогда телескопами, достигали 70 метров в длину и доставляли множество неудобств в работе с ними и настройке их. Недостатки рефракторов заставили великие умы искать решения к улучшению телескопов. Ответ и новый способ был найден: собирание и фокусировке лучей стала производится с помощью вогнутого зеркала. Рефрактор переродился в рефлектор, полностью освободившийся от хроматизма.

Заслуга эта целиком и полностью принадлежит Исааку Ньютону, именно он сумел дать новую жизнь телескопам с помощью зеркала. Его первый рефлектор имел диаметр всего четыре сантиметра. А первое зеркало для телескопа диаметром 30 мм он сделал из сплава меди, олова и мышьяка в 1704 году. Изображение стало четким. Кстати, его первый телескоп до сих пор бережно хранится в астрономическом музее Лондона.

Но еще долгое время оптикам никак не удавалось делать полноценные зеркала для рефлекторов. Годом рождения нового типа телескопа принято считать 1720 год, когда англичане построили первый функциональный рефлектор диаметром в 15 сантиметров. Это был прорыв. В Европе появился спрос на удобоносимые, почти компактные телескопы в два метра длиной. О 40-метровых трубах рефракторов стали забывать.

Двухзеркальная система в телескопе предложена французом Кассегреном. Реализовать свою идею в полной мере Кассегрен не смог из-за отсутствия технической возможности изобретения нужных зеркал, но сегодня его чертежи реализованы. Именно телескопы Ньютона и Кассегрена считаются первыми "современными" телескопами, изобретенными в конце 19 века. Кстати, космический телескоп Хаббл работает как раз по принципу телескопа Кассегрена. А фундаментальный принцип Ньютона с применением одного вогнутого зеркала использовался в Специальной астрофизической обсерватории в России с 1974 года. Расцвет рефракторной астрономии произошел в 19 веке, тогда диаметр ахроматических объективов постепенно рос. Если в 1824 году диаметр был еще 24 сантиметра, то в 1866 году его размер вырос вдвое, в 1885 году диаметр стал составлять 76 сантиметров (Пулковская обсерватория в России), в к 1897 году изобретен иеркский рефрактор. Можно посчитать, что за 75 лет линзовый объектив увеличивался со скоростью одного сантиметра в год.

К концу 18 века компактные удобные телескопы пришли на замену громоздким рефлекторам. Металлические зеркала тоже оказались не слишком практичны - дорогие в производстве, а также тускнеющие от времени. К 1758 году с изобретением двух новых сортов стекла: легкого - крон и тяжелого - флинта, появилась возможность создания двухлинзовых объективов. Чем благополучно и воспользовался ученый Дж. Доллонд, который изготовил двухлинзовый объектив, впоследствии названный доллондовым.

После изобретения ахроматических объективов победа рефрактора была абсолютная, оставалось лишь улучшать линзовые телескопы. О вогнутых зеркалах забыли. Возродить их к жизни удалось руками астрономов-любителей. Вильям Гершель, английский музыкант, в 1781 году открывший планету Уран. Его открытию не было равным в астрономии с глубокой древности. Причем Уран был открыт с помощью небольшого самодельного рефлектора. Успех побудил Гершеля начать изготовление рефлекторов большего размера. Гершель собственноручно в мастерской сплавлял зеркала из меди и олова. Главный труд его жизни - большой телескоп с зеркалом диаметром 122 см. Это диаметр его самого большого телескопа. Открытия не заставили себя ждать, благодаря этому телескопу, Гершель открыл шестой и седьмой спутники планеты Сатурн. Другой, ставший не менее известным, астроном-любитель английский землевладелец лорд Росс изобрел рефлектор с зеркалом с диаметром в 182 сантиметра. Благодаря телескопу, он открыл ряд неизвестных спиральных туманностей. Телескопы Гершеля и Росса обладали множеством недостатков. Объективы из зеркального металла оказались слишком тяжелыми, отражали лишь малую часть падающего на них света и тускнели. Требовался новый совершенный материал для зеркал. Этим материалом оказалось стекло. Французский физик Леон Фуко в 1856 году попробовал вставить в рефлектор зеркалом из посеребренного стекла. И опыт удался. Уже в 90-х годах астроном-любитель из Англии построил рефлектор для фотографических наблюдений со стеклянным зеркалом в 152 сантиметра в диаметре. Очередной прорыв в телескопостроении был очевиден.

Этот прорыв не обошелся без участия русских ученых. Я.В. Брюс прославился разработкой специальных металлических зеркал для телескопов. Ломоносов и Гершель, независимо друг от друга, изобрели совершенно новую конструкцию телескопа, в которой главное зеркало наклоняется без вторичного, тем самым уменьшая потери света.

Немецкий оптик Фраунгофер поставил на конвейер производство и качество линз. И сегодня в Тартуской обсерватории стоит телескоп с целой, работающей линзой Фраунгофера. Но рефракторы немецкого оптика также были не без изъяна - хроматизма.

И лишь к концу 19 века изобрели новый метод производства линз. Стеклянные поверхности начали обрабатывать серебряной пленкой, которую наносили на стеклянное зеркало путем воздействия виноградного сахара на соли азотнокислого серебра. Эти принципиально новые линзы отражали до 95% света, в отличие от старинных бронзовых линз, отражавших всего 60% света. Л. Фуко создал рефлекторы с параболическими зеркалами, меняя форму поверхности зеркал. В конце 19 века Кросслей, астроном-любитель, обратил свое внимание на алюминиевые зеркала. Купленное им вогнутое стеклянное параболическое зеркало диаметром 91 см сразу было вставлено в телескоп. Сегодня телескопы с подобными громадными зеркалами устанавливаются в современных обсерваториях. В то время как рост рефрактора замедлился, разработка зеркального телескопа набирала обороты. С 1908 по 1935 года различные обсерватории мира соорудили более полутора десятков рефлекторов с объективом, превышающим иеркский. Самый большой телескоп установлен в обсерватории Моунт-Внльсон, его диаметр 256 сантиметров. И даже этот предел соврем скоро превзойден вдвое. В Калифорнии смонтирован американский рефлектор-гигант, на сегодня его возраст более пятнадцати лет.

Более 30 лет назад в 1976 году ученые СССР построили 6-метровый телескоп БТА - Большой Телескоп Азимутальный. До конца 20 века БРА считался крупнейшим в мире телескопом Изобретатели БТА были новаторами в оригинальных технических решениях, таких как альт-азимутальная установка с компьютерным ведением. Сегодня это новшества применяются практически во всех телескопах-гигантах. В начале 21 века БТА оттеснили во второй десяток крупных телескопов мира. А постепенная деградация зеркала от времени - на сегодня его качество упало на 30% от первоначального - превращает его лишь в исторический памятник науке.

К новому поколению телескопов относятся два больших телескопа 10-метровых близнеца KECK I и KECK II для оптических инфракрасных наблюдений. Они были установлены в 1994 и 1996 году в США. Их собрали благодаря помощи фонда У. Кека, в честь которого они и названы. Он предоставил более 140 000 долларов на их строительство. Эти телескопы размером с восьмиэтажный дом и весом более 300 тонн каждый, но работают они с высочайшей точностью. Принцип работы - главное зеркало диаметром 10 метров, состоящее из 36 шестиугольных сегментов, работающих как одно отражательное зеркало. Установлены эти телескопы в одном из оптимальных на Земле мест для астрономических наблюдений - на Гаваях, на склоне потухшего вулкана Мануа Кеа высотой 4 200 м. К 2002 году эти два телескопа, расположенных на расстоянии 85 м друг от друга, начали работать в режиме интерферометра, давая такое же угловое разрешение, как 85-метровый телескоп. История телескопа прошла долгий путь - от итальянских стекольщиков до современных гигантских телескопов-спутников. Современные крупные обсерватории давно компьютеризированы. Однако любительские телескопы и многие аппараты, типа Хаббл, все еще базируются на принципах работы, изобретенных Галилеем.

РЕНТГЕНОВСКИЙ ТЕЛЕСКОП

Прибор для исследования временных и спектр. св-в источников косм. рентг. излучения, а также для определения координат этих источников и построения их изображения.

Существующие Р. т. работают в диапазоне энергий e фотонов рентг. излучения от 0,1 до сотен кэВ, т. е. в интервале длин волн от 10 нм до сотых долей нм. Для проведения астрономич. наблюдений в этой области длин волн Р. т. поднимают за пределы земной атмосферы на ракетах или ИСЗ, т. к. рентг. излучение сильно поглощается атмосферой. Излучение с e>20 кэВ можно наблюдать начиная с высот =30 км с аэростатов.

Р. т. позволяет:

1) регистрировать с высокой эффективностью рентг. фотоны;

2) отделять события, соответствующие попаданию фотонов нужного диапазона энергий от сигналов, вызванных воздействием заряж. ч-ц и гамма-фотонов;

3) определять направление прихода рентг. излучения.

В Р. т. для диапазона 0,1-30 кэВ детектором фотонов служит пропорциональный счётчик, наполненный газовой смесью (Ar+СН4, Ar+СО2 или Хе+СО2). Поглощение рентг. фотона атомом газа сопровождается испусканием фотоэлектрона (см. ФОТОЭЛЕКТРОННАЯ ЭМИССИЯ), оже-электронов (см. ОЖЕ-ЭФФЕКТ) и флуоресцентных фотонов (см. ФЛУОРЕСЦЕНЦИЯ). Фотоэлектрон и оже-электрон быстро теряют свою энергию на ионизацию газа, флуоресцентные фотоны также могут быстро поглотиться газом благодаря фотоэффекту. В этом случае полное число образовавшихся электронно-ионных пар пропорц. энергии рентг. фотона. Т. о., по импульсу тока в цепи анода восстанавливается энергия рентг. фотона.

Рис. 1. а-схема рентг. телескопа со щелевым коллиматором; б - работа телескопа в режиме сканирования.

В обычных условиях Р. т. облучается мощными потоками заряж. ч-ц и гамма-фотонов разл. энергий, к-рые детектор Р. т. регистрирует вместе с рентг. фотонами от исследуемого источника излучения. Для выделения рентг. фотонов из общего фона применяется метод антисовпадений (см. СОВПАДЕНИЙ МЕТОД). Приход рентг. фотонов фиксируют также по форме создаваемого ими импульса электрич. тока, поскольку заряж. ч-цы дают сигналы, более затянутые во времени, чем те, что вызываются рентг. фотонами.

Для определения направления на рентг. источник служит устройство, состоящее из щелевого коллиматора и жёстко закреплённого с ним на одной раме звёздного датчика. Коллиматор (набор пластин) ограничивает поле зрения Р. т. и пропускает рентг. фотоны, идущие лишь в небольшом телесном угле (=10-15 квадратных градусов). Рентг. фотон, прошедший коллиматор (рис. 1,a), регистрируется верх. объёмом счётчика. Возникший импульс тока по цепи верх. анода проходит схему антисовпадений (поскольку нет запрещающего сигнала с ниж. анода) и подаётся на анализатор для определения временных и энергетич. хар-к фотона. Затем по телеметрии информация передаётся на Землю. Одновременно передаётся информация звёздного датчика о ярчайших звёздах, попавших в его поле зрения. Эта информация позволяет установить положение осей Р. т. в пр-ве в момент прихода фотона.

При работе Р. т. в режиме сканирования направление на источник определяется как положение Р. т., при к-ром скорость счёта достигает максимума. Угл. разрешение Р. т. со щелевым коллиматором или аналогичным сотовым коллиматором составляет несколько десятков угловых минут.

Значительно лучшим угл. разрешением (= неск. десятков секунд) обладают Р. т. с модуляц. коллиматорами (рис. 2, а). Модуляц. коллиматор представляет собой две (или больше) проволочные одномерные сетки, устанавливаемые между детектором и щелевым коллиматором, для чего последний поднимается над детектором на высоту =1 м и наблюдения ведутся в режиме либо сканирования (рис. 1,б), либо вращения относительно оси, перпендикулярной плоскости сеток. Проволочки в каждой сетке коллиматора устанавливаются параллельно друг другу на расстоянии, равном диаметру проволочки. Поэтому при движении источника по полю зрения Р. т. тени от верх. проволочек скользят по ниж. сетке, попадая то на проволочки, и тогда скорость счёта максимальна, то между ними, и тогда она минимальна (фон).

Угл. распределение скорости счёта Р. т. с модуляц. коллиматором (ф у н к ц и я о т к л и к а) показано на рис. 2, б. Для n-сеточного модуляц. коллиматора угол между соседними максимумами q0=2n-1qr, где qr=d/l - угл. разрешение Р. т. В большинстве случаев Р. т. с модуляц. коллиматорами дают точность локализации рентг. источников, достаточную для их отождествления с небесными объектами, излучающими в иных диапазонах эл.-магн. волн.

С модуляц. коллиматорами начинает конкурировать методика кодиров. апертуры, позволяющая получить qr

Рис. 2. а - устройство рентг. телескопа с модуляц. коллиматором; б - угл. распределение скорости счёта.

Положение источника рентг. излучения в поле зрения Р. т. определяется по положению максимума корреляц. функции между полученным распределением скорости счёта по поверхности детектора и функцией пропускания экрана.

В области энергий e>15 кэВ в кач-ве детекторов Р. т. применяют крист. сцинтилляторы NaI (Тl) (см. СЦИНТИЛЛЯЦИОННЫЙ СЧЁТЧИК); для подавления фона заряж. ч-ц высоких энергий и гамма-фотонов служат устанавливаемые на антисовпадения с первыми крист. сцинтилляторы CsI(Tl). Для ограничения поля зрения в таких Р. т. применяют активные коллиматоры - цилиндры из сцинтилляторов, включённые на антисовпадения со сцинтилляторами NaI(Tl).

В диапазоне энергий от 0,1 до неск. кэВ наиболее эффективны Р. т., в к-рых осуществляется фокусировка излучения, падающего под малыми углами на фокусирующее зеркало (рис. 3). Чувствительность такого Р. т. в =103 раз превосходит Р. т. др. конструкций благодаря его способности собирать излучение со значит. площади и направлять на детектор малых размеров, что существенно повышает отношение сигнал/шум. Р. т., построенный по такой схеме, даёт двумерное изображение источника рентг. излучения подобно обычному оптич. телескопу.

Рис. 3. Схема фокусирующего рентг. телескопа.

Для построения изображения в фокусирующем Р. т. в кач-ве детекторов используют позиционно-чувствительные пропорц. камеры, микроканальные детекторы, а также приборы с зарядовой связью (ПЗС). Угл. разрешение в первом случае определяется гл. обр. пространств. разрешением камеры и составляет =1", микроканальные детекторы и ПЗС дают 1-2" (для близких к оси пучков). При спектрометрич. исследованиях применяют ПП детекторы, брэгговские крист. спектрометры и дифракц. решётки с позиционно-чувствит. детекторами. Косм. источники рентг. излучения очень разнообразны. Рентг. излучение Солнца было открыто в 1948 в США с ракеты, поднявшей Гейгера счётчики в верх. слои атмосферы. В 1962 группой Р. Джиаккони (США) также с ракеты был обнаружен первый источник рентг. излучения за пределами Солнечной системы - «Скорпион Х-1», а также диффузный рентг фон, по-видимому, внегалактич. происхождения. К 1966 в результате экспериментов на ракетах было открыто ок. 30 дискретных рентг. источников. С выводом на орбиту серии спец. ИСЗ («УХУРУ», «Ариэль», «САС-3», «Вела», «Коперник», «ХЕАО» и др.) с Р. т. разл. типов были обнаружены сотни рентг. источников (галактич. и внегалактических, протяжённых и компактных, стационарных и переменных). Мн. из этих источников ещё не отождествлены с источниками, проявляющими себя в оптич. и др. диапазонах эл.-магн. излучения. Среди отождествлённых галактич. объектов: тесные двойные звёздные системы, один из компонентов к-рых - рентг. пульсар; одиночные пульсары (Crab, Vela); остатки сверхновых звёзд (протяжённые источники); временные (транзиентные) источники, резко увеличивающие светимость в рентг. диапазоне и вновь угасающие за время от неск. минут до неск. месяцев; т. н. б а р с т е р ы - мощные вспыхивающие источники рентг. излучения с характерным временем вспышки порядка неск. секунд. К отождествлённым внегалактич. объектам относятся ближайшие галактики (Магеллановы облака и Туманность Андромеды), радиогалактики Дева-А (М87) и Центавр-А (NGC 5128), квазары (в частности, ЗС 273), сейфертовские и др. галактики с активными ядрами; скопления галактик - самые мощные источники рентг. излучения во Вселенной (в них за излучение ответствен горячий межгалактич. газ с темп-рой 50 млн. К). Подавляющее большинство косм. рентг. источников явл. объектами, совершенно непохожими на те, что были известны до начала рентг. астрономии, и прежде всего они отличаются огромным энерговыделением. Светимость галактич. рентг. источников достигает 1036-1038 эрг/с, что в 103-105 раз превышает энерговыделение Солнца во всём диапазоне длин волн. У внегалактич. источников была зарегистрирована светимость до 1045 эрг/с, что указывает на необычность проявляющихся здесь механизмов излучения. В тесных двойных звёздных системах, напр., в кач-ве осн. механизма энерговыделения рассматривают перетекание в-ва от одного компонента (звезды-гиганта) к другому (нейтронной звезде или чёрной дыре) - дисковую аккрецию, при к-рой падающее на звезду в-во образует около этой звезды диск, где в-во благодаря трению разогревается и начинает интенсивно излучать. Среди вероятных гипотез происхождения диффузного рентг. фона, наряду с предположением о тепловом излучении горячего межгалактич. газа, рассматривается обратный Комптона эффект эл-нов на ИК фотонах, испущенных активными галактиками, или на фотонах реликтового излучения. Данные наблюдений с ИСЗ ХЕАО-В свидетельствуют о том, что значительный вклад (>35%) в диффузный рентг. фон дают далёкие дискретные источники, гл. обр. квазары.

"РЕНТГЕНОВСКИЙ ТЕЛЕСКОП" в книгах

4.2. Рентгеновский снимок электронного залогового досье

Из книги Залоговик. Все о банковских залогах от первого лица автора Вольхин Николай

4.2. Рентгеновский снимок электронного залогового досье Полноценное функционирование системы лимитирования работы в сети и использование прогрессивной модели организационной структуры возможно при условии единого информационного поля во всех подразделениях

Взгляд, как рентгеновский луч

Из книги Таинственные явления природы автора Понс Педро Палао

Взгляд, как рентгеновский луч Она не имеет способности фотографировать или проявлять пленку. Ей это не нужно, потому что она сама подобна аппарату для рентгена.В 2004 году в СМИ появилась более чем невероятная новость. Первой рассказала ее британская ежедневная газета «The

Рентгеновский спектр неоткрытых элементов

Из книги О чем рассказывает свет автора Суворов Сергей Георгиевич

Рентгеновский спектр неоткрытых элементов Наконец изучение закономерностей рентгеновских спектров привело к открытиям новых элементов.Мы видим, что по частоте рентгеновского излучения серии К у какого-нибудь элемента можно установить, каков заряд ядра у его атомов, в

Телескоп

Из книги Твиты о вселенной автора Чаун Маркус

Телескоп 122. Кто изобрел телескоп? Никто не знает наверняка. Первые примитивные телескопы, возможно, уже были в конце XVI в., может быть, даже раньше. Хотя очень низкого качества.Первое упоминание о телескопе («трубы, чтобы видеть далеко») - в патентной заявке от 25 сентября

27. ТЕЛЕСКОП

Из книги 100 великих изобретений автора Рыжов Константин Владиславович

27. ТЕЛЕСКОП Подобно очкам, зрительная труба была создана человеком, далеким от науки. Декарт в своей «Диоптрике» так повествует об этом важном изобретении: «К стыду истории наших наук столь замечательное изобретение было впервые сделано чисто опытным путем и притом

Рентгеновский аппарат

автора Коллектив авторов

Рентгеновский аппарат Рентгеновский аппарат – это прибор, предназначенный для исследования (рентгенодиагностика) и лечения болезней (рентгенотерапия) при помощи рентгеновских лучей.Дисциплина, которая занимается рентгенодиагностикой и рентгенотерапией, называется

Рентгеновский гониометр

Из книги Большая энциклопедия техники автора Коллектив авторов

Рентгеновский гониометр (см. «Рентгеновская камера», «Рентгеновский дифрактометр»)Рентгеновский гониометр – прибор, регистрирующий на фотопленке дифракционную картину, при помощи положения наблюдаемого образца и детектора он вызывает дифракцию рентгеновских лучей.

Рентгеновский дифрактометр

Из книги Большая энциклопедия техники автора Коллектив авторов

Рентгеновский дифрактометр (см. «Рентгеновский гониометр»)Рентгеновский дифрактометр – прибор, определяющий интенсивность и направление рентгеновского излучения, которое дифрагирует на исследуемом объекте, имеющем кристаллическую структуру. Он измеряет

Рентгеновский микроскоп

Из книги Большая энциклопедия техники автора Коллектив авторов

Рентгеновский микроскоп Рентгеновский микроскоп – прибор, исследующий микроскопическую структуру и строение объекта при использовании рентгеновского излучения. Рентгеновский микроскоп имеет больший предел разрешения, чем световой микроскоп, потому что

Телескоп

Из книги Большая энциклопедия техники автора Коллектив авторов

Телескоп Телескоп (от греч. tele – «вдаль», «далеко» и scopeo – «смотрю») – устройство для изучения небесных тел.Конструктивно и по принципу действия телескопы подразделяются на оптические, рентгеновские, гамма-телескопы, ультрафиолетовые, инфракрасные и радиотелескопы.

Рентгеновский аппарат 8 ноября 1895 г. профессор Вюрцбургского университета (Германия) Вильгельм Рентген, пожелав жене спокойной ночи, спустился в свою лабораторию, чтобы еще немного поработать.Когда настенные часы пробили одиннадцать, ученый погасил лампу и вдруг