Open
Close

Нервная ткань состоит из основных. Нервная ткань. Организация и функции нервной системы

Нервная ткань занимает особое место в организме высокоразвитых животных. Через чувствительные нервные окончания организм получает сведения о внешнем мире. Возбуждение, вызванное такими агентами внешней среды, как звук, свет, температура, химические и прочие воздействия, передается по чувствительным нервным волокнам в определенные участки центральной нервной системы. Затем нервный импульс в силу определенной, очень сложной организации нервной ткани переходит на другие участки центральной нервной системы. Отсюда он по двигательным волокнам передается к мышцам или железе, которые и осуществляют целесообразную ответную реакцию на раздражение. Она выражается в том, что мышца сокращается, а железа выделяет секрет. Путь от органа чувств до центральной нервной системы и от нее до эффекторного органа (мышца, железа) называется рефлекторной дугой, а сам процесс - рефлексом. Рефлекс - это механизм, при помощи которого животное приспосабливается к меняющимся условиям внешней среды.

На протяжении длительного периода эволюционного развития животных ответная реакция благодаря совершенствованию нервной системы становилась разнообразнее, сложнее, и животные все более и более приспосабливались к различным, часто весьма изменчивым условиям внешней среды.

Рис. 67. Глиоциты спинного мозга (А) и глиальные макрофаги (Б):

I - длиннолучевые, или волокнистые, астроциты; 2 - коротколучевые, или протоплазматические, астроциты; 3 - клетки эпендимы; 4 - апикальные концы этих клеток, несущие мерцательные реснички, создающие ток цереброспинальной жидкости в желудочках мозга и спинномозговом канале; 5 - отростки клеток эпендимы, образующие остов нервной ткани; 6 - концевые пуговки отростков эпендимы, отграничивающие подобно мембране центральную нервную систему от окружающих тканей.

Особенно сложна и дифференцирована нервная система млекопитающих. У них каждый отдел нервной системы, даже самый небольшой ее участок, имеет свою, только ему свойственную структуру нервной ткани. Однако, несмотря на большое различие нервной ткани разных участков нервной системы, для всех разновидностей ее характерны некоторые общие черты строения. Эта общность заключается в том, что все разновидности нервной ткани построены из нейронов и клеток нейроглии. Нейроны - главная функциональная единица нервной ткани. Именно в них появляется и по ним распространяется нервный импульс. Однако свою деятельность нейрон может осуществлять при тесном контакте с нейроглией. Межклеточного вещества в нервной ткани очень мало и представлено оно межклеточной жидкостью. Глиальные волокна и пластинки относятся к структурным элементам клеток нейроглии, а не к промежуточному веществу ткани.

Нейроглия весьма многофункциональный компонент. Одной из важных функций нейроглии является механическая, так как она образует остов нервной ткани, на котором размещаются нейроны. Другая функция нейроглии- трофическая. Клетки нейроглии играют также защитную роль. Исследования (В. В. Португалов и др.) свидетельствуют, что нейроглия косвенно участвует в проведении нервного импульса по нейрону. Нейроглия, по-видимому, обладает также инкреторной функцией.

По происхождению нейроглию делят на глиоциты и глиальные макрофаги (рис. 67).

Глиоциты образуются из того же нервного зачатка, что и нейроны, то есть из нейроэктодермы. Среди глиоцитов различают астроциты, эпинди-моциты и олигодендроглиоциты. Основная клеточная форма из них - астроциты.

В центральной нервной системе опорный аппарат представлен мелкими клетками с многочисленными радиально расходящимися отростками. В специальной литературе различают два вида астроцитов: плазматические и волокнистые. Плазматические астроциты находятся преимущественно в сером веществе головного и спинного мозга. Клетка характеризуется наличием крупного, бедного хроматином ядра. От тела клетки отходят многочисленные короткие отростки. Цитоплазма богата митохондриями, что говорит об участии астроцитов в обменных процессах. Волокнистые астроциты располагаются в основном в белом веществе мозга. Эти клетки имеют доЖ) длинных, слабо ветвящихся отростков.

Эпиндимоциты выстилают полости желудков и каналов в головном и спинном мозге. Обращенные в просвет полостей и каналов концы клеток несут мерцательные реснички, обеспечивающие ток спинномозговой жидкости. От противоположных концов этих клеток отходят отростки, пронизывающие все вещество мозга. Эти отростки также играют опорную роль. Олигодендроглиоциты окружают тела невроцитов в центральной и периферической нервных системах, находятся в оболочках нервных волокон. В различных отделах нервной системы они имеют разную форму. От тел этих клеток отходит несколько коротких и слабо разветвленных отростков. Функциональное значение олигодендроглиоцитов очень разнообразно (трофическое, участие в регенерации и дегенерации волокон и т. д.)-

Рис. 68. Строение нейрона:

/ - тело клетки с ядром; 2 - дендриты; 3 - аксон; 4 - миели-новая оболочка; 5 - оболочка леммоцита;

6 - ядро леммоцита;

7 - концевые разветвления; 8 - боковая ветвь.

Глиальные макрофаги развиваются из клеток мезенхимы, которые при развитии нервной системы проникают в нее вместе с кровеносными сосудами. Глиальные макрофаги состоят из клеток довольно разнообразной формы, но для большинства этих клеток характерно наличие сильно разветвленных отростков. Однако встречаются клетки и округлой формы. Глиальные макрофаги играют трофическую роль и выполняют защитную фагоцитарную функцию.

Нейроны - это высокоспециализированные клетки, образующие звенья рефлекторной дуги. В нейроне совершаются основные нервные процессы: раздражение, которое возникает в результате воздействия на нервные окончания факторов внешней и внутренней среды; превращение раздражения в возбуждение и передача нервного импульса. Нейроны разных участков нервной системы имеют разные функцию, строение и размер.

По функции различают нейроны чувствительные, двигательные и передаточные. Чувствительные (афферентные) нейроны воспринимают раздражение и передают возникший в результате раздражения нервный импульс в спинной или головной мозг. Передаточные (ассоциативные) нейроны переводят возбуждение с чувствительных нейронов на двигательные. Двигательные (эфферентные) нейроны передают импульс от головного или спинного мозга к мускулатуре, железам и др.

Нейрон состоит из сравнительно компактного и массивного тела и отходящих от него тонких более или менее длинных отростков (рис. 68). Тело нервной клетки главным образом управляет ростом и обменными процессами, а отростки осуществляют передачу нервного импульса и вместе с телом клетки ответственны за происхождение импульса. Тело нервной клетки состоит главным образом из цитоплазмы. Ядро бедно хроматином и всегда содержит одно или два хорошо выраженных ядрышка. Из органелл в нервных клетках хорошо развит пластинчатый комплекс, имеется большое количество митохондрий с продольными гребнями. Специфичными для нервной клетки являются базофильное вещество ее и нейрофибриллы (рис. 69).

Рис. 69. Специальные органеллы нервной клетки:

/ - базофильное вещество в моторной клетке спинного мозга; / - ядро; 2 - ядрышко; 3 - глыбки базального вещества; Д - начало дендритов; Н - начало нейрона, // - нейрофибриллы в нервной клетке спинного мозга.

Базофильное, или тигроидноеу вещество состоит из белковых веществ, содержащих железо и фосфор. Оно богато рибонуклеиновой кислотой и гликогеном. В виде глыбок неправильной формы это вещество разбросано по всему телу клетки и придает ей пятнистый вид (I). В живой неокрашенной клетке этого вещества не видно. Электронная микроскопия показала, что базофильное вещество идентично зернистой цитоплазматической сети и состоит из сложной сети мембран, которые формируют трубочки или цистерны, лежащие параллельно друг другу и связанные в единое целое. На стенках мембран располагаются гранулы - рибосомы (диаметр 100-300 А), богатые РНК. С базофиль-ным веществом связаны важнейшие физиологические процессы, совершающиеся в клетке. Известно, например, что при утомлении нервной системы количество тигро-идного вещества резко уменьшается, а во время отдыха оно восстанавливается.

Нейрофибриллы на фиксированных препаратах имеют вид тонких нитей, расположенных в теле клетки довольно беспорядочно (II). Электронный микроскоп показал, что фибриллярные элементы нервной клетки, аксона и денд-ритов состоят из трубочек диаметром 200-300 А.оОбнаруживают также более тонкие нити - нейрофиламенты, толщина 100 А. При изготовлении препаратов они могут объединяться в пучки, видимые в световом микроскопе в виде нейрофибрилл. Функция их, вероятно, связана с трофическими процессами.

Отростки нервной клетки проводят возбуждение со скоростью около 100 м/с. В зависимости от количества отростков различают нейроны: униполярные - с одним отростком, биполярные - с двумя отростками, лож-ноуниполярные - развиваются из биполярных, но во взрослом состоянии имеют один отросток, слившийся из двух ранее самостоятельных отростков, кмультиполярные - с несколькими отростками (рис. 70). У млекопитающих чувствительные нейроны являются ложноуниполярными (за исключением клеток Догеля II типа), и их тела лежат либо в спинномозговых ганглиях, либо в чувствительных черепно-мозговых нервах. Передаточные и двигательные нейроны являются мультиполярными. Отростки одной нервной клетки не равнозначны. На основе функции различают два вида отростков: нейрит и дендриты.

Рис. 70, Типы нервных клеток:

А ~ Униполярная клетка; Б - биполярная

Клетка; В - мультиполярная клетка; 1 -

Дендриты; 2 - нейриты.

Нейритом пли аксоном называется отросток, по которому возбуждение передается от тела клетки, то есть цен-тробежно. Он является обязательной

Составной частью нервной клетки. От тела каждой клетки отходит только один нейрит, который по длине может варьировать от нескольких миллиметров до 1,5 м, а по толщине от 5 до 500 мкм (у кальмара), но у млекопитающих чаще диаметр колеблется около 0,025 нм (нанометр, миллимикрон). Разветвляется нейрит обычно сильно лишь на самом конце. На остальном протяжении от него отходят немногочисленные боковые веточки (коллатера-ли). Благодаря этому диаметр аксона уменьшается незначительно, что обеспечивает большую скорость нервного импульса. В аксоне находятся прото-нейрофибриллы, но в них никогда не встречается базальное вещество. Дендриты - отростки, которые в отличие от аксона воспринимают раздражение и передают возбуждение к телу клетки, то есть центростремительно. У очень многих нервных клеток эти отростки древовидно ветвятся, что и дало повод назвать их дендритами (dendron - дерево). В дендритах имеются не только протонейрофибриллы, но и базофильное вещество. От тела мультиполярных клеток отходит несколько дендритов, от тела биполярной - один, а униполярная клетка лишена дендритов. В этом случае раздражение воспринимается телом клетки.

Нервное волокно - отросток нервной клетки, окруженный оболочками (рис. 71,72). Цитоплазматический отросток нервной клетки, занимающий центр волокна, называется осевым цилиндром. Он может быть представлен либо дендритом, либо нейритом. Оболочка нервного волокна построена за счет леммоцита. От толщины осевого цилиндра и строения оболочек волокна зависит скорость передачи нервного импульса, которая колеблется от нескольких м/с до 90, 100 и может достигать 5000 м/с. В зависимости от строения оболочек различают нервные волокна безмиелиновые и миелино-вые. И в тех и в других волокнах оболочка, окружающая цитоплазматичес-кий отросток нервной клетки, состоит из леммоцитов, но морфологически отличающихся друг от друга. Безмиелиновые волокна представляют собой несколько осевых цилиндров, принадлежащих разным нервным клеткам, погруженных в массу леммоцитов. Эти клетки лежат друг над другом вдоль волокна. Осевые цилиндры могут переходить из одного волокна в другое,

Рис. 71. Строение безмиелинового Рис. 72. Строение миелинового нервного волокна:

Нервного волокна: 1 - цитоплазма; 2 -- ядро; 3 - оболочка А - схема; / - осевой цилиндр; 2 - миелиновая обо- леммоцита; 4 - мезаксон; 5-аксон; 6 - лочка; 3 - неврилемма, или оболочка леммоцита; 4 - аксон, переходящий из леммоцита одного ядро леммоцита; 5 -перехват Ранвье; Б - электрон-волокна в леммоцит другого; 7 - граница ная микрограмма части миелинового волокна, между двумя леммоцитами одного волокна.

Рис. 73. Схема развития миелинового волокна:

/ - леммоцит; 2- его ядро; 3 - его плазмалемма; 4- осевой цилиндр; 5 - мезаксон; стрелкой указано направление вращения осевого цилиндра; 5- будущая миелиновая оболочка нервного волокна;

7 - неврилемма, его же.

А иногда глубоко внедряться в леммоциты, увлекая за собой их плазмалемму. Благодаря этому образуются мезаксоны (рис. 71-4). По безмиелиновым волокнам нервный импульс проходит медленнее и может передаваться лежащим рядом с ними отросткам других нейритов, а благодаря переходу осевых цилиндров из одного волокна в другое передача возбуждения имеет нестрого направленный, а разлитой, диффузный характер. Безмиелиновые волокна находятся главным образом во внутренних органах, которые осуществляют свою функцию сравнительно медленно и диффузно.

Миелиновые волокна отличаются от безмиелиновых большой толщиной и усложненным строением оболочки (рис. 72). В процессе развития отросток нервной клетки., называемый в волокне осевым цилиндром, погружается в леммоцит (шванновскую клетку). В результате вначале он облекается одним слоем плазмалеммы леммоцита, состоящей, как и оболочки других клеток, из бимолекулярного слоя липидов, располагающихся между мономолекулярными слоями белков. Дальнейшее внедрение осевого цилиндра приводит к образованию мезаксона, аналогичного таковому безмиелинового волокна. Однако в случае развития миелинового волокна вследствие удлинения мезаксона и наслоения его вокруг осевого цилиндра (рис. 71) развивается многослойная оболочка, называемая миелиновой (рис. 73). Благодаря присутствию большого количества липидов она хорошо импрегнируется осмием, после чего ее легко можно увидеть в световой микроскоп. Миелиновая оболочка служит изолятором, благодаря которому нервное возбуждение не может переходить на соседнее волокно. По мере развития миелиновой оболочки цитоплазма леммоцитов оттесняется ею и образует очень тонкий поверхностный слой, называемый неврилеммой. В ней лежат ядра леммоцитов. Таким образом, и миелиновая оболочка и неврилемма являются производными леммоцитов.

Миелиновая оболочка нервных волокон, проходящих в белом веществе спинного и головного мозга, а также (по данным Н.В. Михайлова) в периферических нервах белых мышц у птиц, имеет вид сплошного цилиндра. В нервных волокнах, составляющих большинство периферических нервов, она прерывается, то есть состоит из отдельных муфт, между которыми имеются промежутки - перехваты Ранвье. В последнем леммоциты соединяются друг с другом. Осевой цилиндр здесь покрыт лишь неврилеммой. Это облегчает поступление питательных веществ в отросток нервной клетки. Биофизики полагают, что перехваты Ранвье способствуют более ускоренному проведению нервного импульса по отростку, являясь местом регенерации электрического сигнала. Миелиновая оболочка, заключенная между перехватами Ранвье (сегмент), пересекается воронкообразными щелями - миелиновыми насечками, идущими в косом направлении от наружной поверхности оболочки к внутренней. Число насечек в сегменте различное.

В миелиновых волокнах возбуждение проводится быстрее и не переходит на соседние волокна.

Нерв. Нервные волокна в головном и спинном мозге составляют главную массу белого вещества. Выходя из мозга, эти волокна идут не изолированно, а объединяются друг с другом при помощи соединительной ткани. Такой комплекс нервных волокон называют нервом (рис. 74). В состав нерва входит от нескольких тысяч до нескольких миллионов волокон. Они образуют один или несколько пучков - стволиков. В пучки волокна объединяются при помощи соединительной ткани, назы-

Рис. 74. Поперечный разрез нерва лошади:

А - участок его под большим увеличением; / - миелино-вая оболочка нервного волокна; 2 - осевые цилиндры его; 3 - безмиелиновое нервное волокно; 4 - соединительная ткань между нервными волокнами (эндоневрий); 5 - соединительная ткань вокруг пучка нервных волокон (пе-риневрий); 6 - соедшштельная ткань, связывающая несколько нервных пучков (эпиневрий); 7 - сосуды.

Ваемоиэндоневрием. Снаружи каждый пучок окру жен периневрием. Последний иногда состоит из нескольких слоев плоских эпителиоподобных нейроглиального происхождения клеток и из соединительной ткани, а в других случаях построен только из соединительной ткани. Периневрий играет защитную роль. Несколько таких пучков объединяются друг с другом при помощи более плотной соединительной ткани, называемой эпиневрием. Последний покрывает весь нерв снаружи и служит для укрепления нерва в определенном положении. По соединительной ткани в нерв вступают кровеносные и лимфатические сосуды.

Нервные волокна, составляющие нерв, различны по функции и по строению. Если в нерве имеются отростки только двигательных клеток, - это нерв двигательный: если имеются отростки чувствительных клеток - чувствительный, а если и те и другие - смешанный. Нерв образует и миелиновые и безмиелиновые волокна. Количество их в разных нервах различно. Так, по данным Н.В. Михайлова, в нервах конечностей больше миелиновых волокон, а в межреберных безмиелиновых.

Синапсы - место соединения отростков двух нервных клеток между собой (рис. 75). Нейроны либо прикасаются друг с другом своими отростками, либо отросток одного нейрона соприкасается с телом клетки другого нейрона. Соприкасающиеся концы нервных отростков могут иметь форму вздутий, петелек или оплетать, подобно лианам, другой нейрон и его отростки. Электронно-микроскопические исследования показали, что в синапсе следует различать: два полюса, синаптическую щель между ними и замыкающее утолщение.

Первый полюс представлен концом аксона первой клетки, причем плаз-малемма его образует пресинаптическую мембрану. Около нее в аксоне скапливается много митохондрий, иногда присутствуют кольцеобразно расположенные пучки нитей (нейрофиламенты) и всегда находится большое количество синаптических пузырьков. Последние, по-видимому, содержат химические вещества - медиаторы, выделяющиеся в синаптическую щель, и оказывают действие на второй полюс синапса.

Второй полюс образуется либо телом, либо дендритом, либо шиловидным выростом его, либо даже аксоном второго нейрона. Полагают, что в последнем случае происходит торможение, а не возбуждение второго нейрона. Плазмалемма второй нервной клетки формирует второй полюс синапса-постсинаптическую мембрану, отличающуюся большей толщиной. Предполагают, что в ней совершается разрушение медиатора, который возник во время одиночного импульса. В местах соприкосновения пре- и постсинапти-ческих мембран на них имеются утолщения, которые, по-видимому, укрепляют синаптическую связь. Описаны синапсы без синаптической щели. В этом случае нервный импульс, вероятно, передается без участия медиаторов.

Через синапсы возбуждение может проходить только в одном направлении. Благодаря синапсам нейроны, соединяясь друг с другом, образуют рефлекторную дугу.

Нервные окончания являются окончаниями нервных волокон, которые благодаря особой структуре могут либо воспринимать раздражение, либо вызывать сокращение мускула или выделение секрета в железе. Окончания или, вернее, начала чувствительных отростков клеток в органах и тканях, воспринимающих раздражения, называют чувствительными нервными окончаниями или рецепторами. Окончания двигательных отростков нейронов, разветвляющиеся в мышцах или железах, называют двигательными нервными окончаниями или эффекторами. Рецепторы делятся на экстероре-цепторы, воспринимающие раздражение из внешней среды, проприорецепторы, несущие возбуждение от органов движения, и интерорецепторы, воспринимающие раздражение от внутренних органов. Рецепторы обладают повышенной чувствительностью к определенным видам раздражений. Соответственно этому имеются механррецепторы, хеморецепторы и т. д. По строению рецепторы бывают простыми, или свободными, и инкапсулированными.

Рис. 75. Нервные окончания на поверхности клетки спинного мозга (А) и схема строения синапса (Б):

1 - первый полюс синапса (утолщенный конец аксона); 2 -второй полюс синапса (или дендрит второй клетки, или ее тело); 3 - синаптическая щель; 4 - утолщение соприкасающихся мембран, придающее прочность синаптическому соединению; 5 - синаптические пузырьки; 6 - митохондрии.

Свободные нервные окончания (рис. 76). Проникнув в ткань, нервное волокно чувствительного нерва освобождается от своих оболочек, и осевой цилиндр, многократно разветвляясь, свободно оканчивается в ткани отдельными веточками, или эти веточки, переплетаясь, образуют сети и клубочки. В эпителии «пятачка» свиньи чувствительные веточки заканчиваются дискоидальными расширениями, на которых, как на блюдечках, лежат особые чувствительные клет-^ ки (меркелевские).

Инкапсулированные нервные окончания очень разнообразны, но в принципе построены одинаково. В таких окончаниях чувствительное волокно освобождается от оболочек, и голый осевой цилиндр распадается на ряд

Рис. 76. Типы нервных окончаний:

/ - чувствительные вервные окончания - неинкапсулированные; А - в эпителии роговицы; Б - в эпителии «спятачка» свиньи; В - в перикарде лошади: инкапсулированные; Г - Фатер-Починиево тельце; Д - тельце Майснера; Е - тельце из соска овцы; // - двигательные нервные окончания; Ж - в поперечнополосатом волокне; 3 - в гладкой мышечной клетке; / - эпителий; 2 - соединительная ткань; 3 - нервные окончания; 4 - меркелевская клетка; 5 - дискоидальное концевое расширение нервного окончания; 6 - нервное волокно; 7 - разветвление осевого цилиндра; 8 - капсула; 9 - ядро леммоцита; 10 - мышечное волокно.

Веточек.. Они погружаются во внутреннюю колбу, которая состоит из видоизмененных леммоцитов. Внутренняя колба окружена наружной колбой, состоящей из соединительной ткани.

В поперечнополосатой мышечной ткани чувствительные волокна оплетают сверху мышечные волокна, не проникая внутрь их, и образуют подобие веретена. Сверху веретено покрыто соединительнотканной капсулой.

Двигательные нервные окончания, или эффекторы, в гладкой мышечной ткани и железах обычно построены по типу свободных нервных окончаний. Хорошо изучены моторные окончания в поперечнополосатых мышцах. В месте проникновения двигательного волокна сарколемма мышечного волокна прогибается и одевает голый осевой цилиндр, распадающийся в этом месте на несколько веточек с утолщениями на концах.

Нервная ткань располагается в проводящих путях, нервах, головном и спинном мозге, ганглиях. Регулирует и координирует всœе процессы в организме, а так же осуществляет связь с внешней средой.

Основным свойством является возбудимость и проводимость.

Нервная ткань состоит из клеток - нейронов, межклеточного вещества - нейроглия, которая представлена глиальными клетками.

Каждая нервная клетка состоит из тела с ядром, особых включений и нескольких коротких отростков – дендритов, и одного или нескольких длинных – аксонов. Нервные клетки способны воспринимать раздражения из внешней или внутренней среды, преобразовывать энергию раздражения в нервный импульс, проводить их, анализировать и интегрировать. По дендритам нервный импульс идет к телу нервной клетки; по аксону – от тела к следующей нервной клетке или к рабочему органу.

Нейроглия окружает нервные клетки, выполняя при этом опорную, трофическую и защитную функции.

Нервные ткани образуют нервную систему, входят в состав нервных узлов, спинного и головного мозга.

Функции нервной ткани

  1. Генерация электрического сигнала (нервного импульса)
  2. Проведение нервного импульса.
  3. Запоминание и хранение информации.
  4. Формирование эмоций и поведения.
  5. Мышление.

Характеристика нервной ткани

Нервная ткань (textus nervosus) - совокупность клеточных элементов, формирующих органы центральной и периферической нервной системы. Обладая свойством раздражимости, Н.т. обеспечивает получение, переработку и хранение информации из внешней и внутренней среды, регуляцию и координацию деятельности всех частей организма. В составе Н.т. имеются две разновидности клеток: нейроны (нейроциты) и глиальные клетки (глиоциты). Первый тип клеток организует сложные рефлекторные системы посредством разнообразных контактов друг с другом и осуществляет генерирование и распространение нервных импульсов. Второй тип клеток выполняет вспомогательные функции, обеспечивая жизнедеятельность нейронов. Нейроны и глиальные клетки образуют глионевральные структурно-функциональные комплексы.

Нервная ткань имеет эктодермальное происхождение. Она развивается из нервной трубки и двух ганглиозных пластинок, которые возникают из дорсальной эктодермы в процессе ее погружения (нейруляция). Из клеток нервной трубки образуется нервная ткань, формирующая органы ц.н.с. - головной и спинной мозг с их эфферентными нервами (см. Головной мозг, Спинной мозг), из ганглиозных пластинок - нервная ткань различных частей периферической нервной системы. Клетки нервной трубки и ганглиозной пластинки по мере деления и миграции дифференцируются в двух направлениях: одни из них становятся крупными отростчатыми (нейробласты) и превращаются в нейроциты, другие остаются мелкими (спонгиобласты) и развиваются в глиоциты.

Общая характеристика нервной ткани

Нервная ткань(textus nervosus) - это высокоспециализированный вид ткани. Состоит нервная ткань из двух компонентов: нервных клеток (нейронов или нейроцитов) и нейроглии. Последняя занимает все промежутки между нервными клетками. Нервные клетки обладают свойствами воспринимать раздражения, приходить в состояние возбуждения, вырабатывать нервные импульсы и передавать их. Этим и определяется гистофизиологическое значение нервной ткани в корреляции и интеграции тканей, органов, систем организма и его адаптации. Источником развития нервной ткани является нервная пластинка, представляющая собой дорзальное утолщение эктодермы зародыша.

Нервные клетки - нейроны

Структурно-функциональной единицей нервной ткани являются нейроны или нейроциты. Под этим названием подразумевают нервные клетки (их тело - перикарион) с отростками, образуюшими нервные волокна (вместе с глией) и заканчивающимися нервными окончаниями. В настоящее время в широком смысле в понятие нейрон включают и окружающую его глию с сетью кровеносных капилляров, обслуживающих этот нейрон. В функциональном отношении нейроны классифицируют на 3 вида: рецепторные (афферентные или чувствительные), — генерирующие нервные импульсы; эффекторные(эфферентные) - побуждающие ткани рабочих органов к действию: и ассоциативные, образующие разнообразные связи между нейронами. Особенно много ассоциативных нейронов в нервной системе человека. Из них состоит большая часть полушарий головного мозга, спинной мозг и мозжечок. Подавляющее большинство чувствительных нейронов расположено в спинномозговых узлах. К эфферентным нейронам относятся двигательные нейроны (мотонейроны) передннх рогов спинного мозга, имеются также и особые неросекреторные нейроны (в ядрах гипоталамуса), вырабатывающие нейрогормоны. Последние поступают в кровь и спинномозговую жидкость и осуществляют взаимодействие нервной и гуморальной систем, т. е. осуществляют процесс их интеграции.

Характерной структурной особенностью нервных клеток является наличие у них двух видов отростков - аксона и дендритов. Аксон - единственный отросток нейрона, обычно тонкий, мало ветвящийся, отводящий импульс от тела нервной клетки (перикариона). Дендриты, напротив, приводят импульс к перикариону, это обычно более толстые и более ветвящиеся отростки. Количество дендритов у нейрона колеблется от одного до нескольких в зависимости от типа нейронов. По количеству отростков нейроциты подразделяются на несколько видов. Одноотростчатые нейроны, содержащие только аксон, называют униполярными(у человека они отсутствуют). Нейроны, имеющие 1 аксон и 1 дендрит, получили название биполярных. К ним относятся нервные клетки сетчатки глаза и спиральных ганглиев. И, наконец, имеются мультиполярные, многоотростчатые нейроны. Они имеют один аксон и два и более дендрита. Такие нейроны наиболее распространены в нервной системе человека. Разновидностью биполярных нейроцитов являются псевдоуниполярные (ложноодноотростчатые) чувствительные клетки спинномозговых и краниальных узлов. По данным электронной микроскопии аксон и дендрит этих клеток выходят сближенно, тесно примыкая друг к другу, из одного участка цитоплазмы нейрона. Это создает впечатление (при оптической микроскопии на импрегенированных препаратах) о наличии у таких клеток всего лишь одного отростка с последующим его Т-образным делением.

Ядра нервных клеток округлые, имеют вид светлого пузырька (пузырьковидные), лежащего обычно в центре перикариона. В нервных клетках имеются все органеллы общего значения, в том числе и клеточный центр. При окрашивании метиленовым синим, толуидиновым синим и крезиловым фиолетовым в перикарионе нейрона и начальных отделах дендритов выявляются глыбки разной величины и формы. Однако в основание аксона они никогда не заходят. Это хроматофильная субстанция (субстанция Ниссля или базофильное вещество) получила название тигроидного вещества. Оно является показателем функциональной активности нейрона и, в частности, синтеза белка. Под электронным микроскопом тигроидное вещество соответствует хорошо развитой гранулярной эндоплазматической сети, нередко с правильно ориентированным расположением мембран. Это вещество содержит значительное количество РНК, РНП, липидов. иногда гликоген.

При импрегнации солями серебра в нервных клетках выявляются очень характерные структуры - нейрофибриллы. Их относят к органеллам специального значения. Они образуют густую сеть в теле нервной клетки, а в отростках располагаются упорядоченно, параллельно длине отростков. Под электронным микроскопом в нервных клетках выявляются более тонкие нитчатые образования, которые на2-3 порядка тоньше нейрофибрилл. Это, так называемые нейрофиламенты и нейротубулы. По-видимому, их функциональное значение связано с распространением по нейрону нервного импульса. Имеется предположение, что они обеспечивают транспорт нейромедиаторов по телу и отросткам нервных клеток.

Нейроглия

Вторым постоянным компонентом нервной ткани является неироглия(neuroglia). Под этим термином подразумевают совокупность особых клеток, расположенных между нейронами. Нейроглиальные клетки выполняют опорно-трофическую, секреторную и защитную функции. Нейроглия подразделяется на два основных вида: макроглию, представленную глиоцитами, происходящими из нервной трубки и микроглию. включающую глиальные макрофаги, являющиеся производными мезенхимы. Глиальных макрофагов часто называют своеобразными “санитарами” нервной ткани, т. к. они обладают выраженной способностью к фагоцитозу. Глиоциты макроглии, в свою очередь, классифицируют на три типа. Один из них представлен эпендимиоцитами, выстилающими спинно-мозговой канал и желудочки мозга. Они выполняют разграничительную и секреторную функции. Имеются также астроциты - клетки звездчатой формы, проявляющие выраженную опорно-трофическую и разграничительную функции. И, наконец, различают так называемые олигодендроциты. которые сопровождают нервные окончания и участвуют в процессах рецепции. Эти клетки окружают также тела нейронов, участвуя в обмене веществ между нервными клетками и кровеносными сосудами. Олигодендроглиоциты образуют также оболочки нервных волокон, и тогда они носят название леммоцитов (швановских клеток). Леммоциты принимают непосредственное участие в трофике и проведении возбуждения по нервным волокнам, в процессах дегенерации и регенерации нервных волокон.

Нервные волокна

Нервные волокна,(neurofibrae) бывают двух видов: миелиновые и безмиелиновые. Оба типа нервных волокон имеют единый план строения и представляют собой отростки нервных клеток (осевые цилиндры), окруженные оболочкойиз олнгодендроглии - леммоцитов (шванновских клеток). С поверхности к каждому волокну примыкает базальная мембрана с прилегающими к ней коллагеновыми волокнами.

Миелиновые волокна (neurofibrae myelinatae)имеют относительно больший диаметр, сложно устроенную оболочку их леммоцитов и большую скорость проведения нервного импульса (15 - 120 м/сек). В оболочке миелинового волокна выделяют два слоя: внутренний, миелиновый (stratum myelini), более толстый, содержащий много липидов и окрашивающийся осмием в черный цвет. Он состоит из плотноупакованных по спирали вокруг осевого цилиндра слоев-пластин плазматической мембраны леммоцита. Наружный, более тонкий и светлый слой оболочки миелинового волокна, представлен цитоплазмой леммоцита с его ядром. Этот слой называют неврилеммой или шванновской оболочкой. По ходу миелинового слоя имеются косо идущие светлые насечки миелина (incisurae myelini). Это места, где между пластинами миелина проникают прослойки цитоплазмы леммоцита. Сужения нервного волокна, где отсутствует миелиновый слой, называют узловыми перехватами (nodi neurofibrae). Они соответствуют границе двух смежных леммоцитов.

Безмиелиновые нервные волокна(neurofibrae nonmyelinatae)более тонкие, чем миелиновые. В их оболочке, образованной тоже леммоцитами, отсутствует миелиновый слой, насечки и перехваты. Такое строение безмиелнновых нервных волокон обусловлено тем, что хотя леммоциты и охватывают осевой цилиндр, но они не закручиваются вокруг него. В один леммоцит при этом может быть погружено несколько осевых цилиндров. Это волокна кабельного типа. Безмиелиновые нервные волокна входят преимущественно в состав вегетативной нервной системы. Нервные импульсы вних распространяются медленнее (1-2 м/сек), чемв миелиновых, и имеют тенденцию к рассеиванию и затуханию.

Нервные окончания

Нервные волокна заканчиваются концевыми нервными аппаратами, называемыми нервными окончаниями(terminationes nervorum). Различают три вида нервных окончаний: эффекторы (эффекторные), рецепторы (чувствительные) и межнейронные связи - синапсы.

Эффекторы(effectores)бывают двигательными и секреторными. Двигательные окончания представляют собой концевые аппараты аксонов моторных клеток (преимущественно передних рогов спинного мозга) соматической или вегетативной нервной системы. Двигательные окончания в поперечно-полосатой мышечной ткани называют нервно-мышечными окончаниями (синапсами) или моторными бляшками. Моторные нервные окончания в гладкой мышечной ткани имеют вид пуговчатых утолщений или четкообразных расширений. Секреторные окончания выявлены на железистых клетках.

Рецепторы(receptores)представляют собой концевые аппараты дендритов чувствительных нейронов. Одни из них воспринимают раздражение из внешней среды - этоэкстеро-рецепторы. Другие получают сигналы от внутренних органов - это интерорецепторы. Среди чувствительных нервных окончаний по их функциональным проявлениям различают: механорецепторы, барорецепторы, терморецепторы и хеморецепторы.

По строению рецепторы подразделяют на свободные - это рецепторы в виде усиков, кустиков, клубочков. Они состоят только из ветвлений самого осевого цилиндра и не сопровождаются нейроглией. Другой вид рецепторов это несвободные. Они представлены терминалями осевого цилиндра, сопровождаемыми нейроглиальными клетками. Среди несвободных нервных окончаний выделяют инкапсулированные, покрытые соединительнотканными капсулами. Это осязательные тельца Мейснера, пластинчатые тельца Фатер-Пачини и др. Второй разновидностью несвободных нервных окончаний являются неинкапсулированные нервные окончания. К ним относят осязательные мениски или осязательные диски Меркеля, залегающие в эпителии кожи и др.

Межнейрональные синапсы (synapses interneuronales) - это места контактов двух нейронов. По локализации различают следующие виды синапсов: аксодендритические, аксосоматические и аксоаксональные (тормозные). Реже встречаются синапсы дендродендритические, дендросоматические и сомасоматические. В световом микроскопе синапсы имеют вид колечек, пуговок, булав (концевые синапсы) или тонких нитей, стелющихся по телу или отросткам другого нейрона. Это так называемые касательные синапсы. На дендритах выявляются синапсы, получившие название дендритических шипиков (шипиковый аппарат). Под электронным микроскопом в синапсах различают так называемый пресинаптический полюс с пресинаптической мембраной одного нейрона и постсинаптический полюс с постсинаптической мембраной (другого нейрона). Между этими двумя полюсами располагается синоптическаящель. На полюсах синапса часто сосредоточено большое количество митохондрий, а в области пресинаптического полюса и синаптической щели - синаптических пузырьков (в химических синапсах).

По способу передачи нервного импульса различают химические. электрические и смешанные синапсы. В химических синапсах в синаптических пузырьках содержатся медиаторы - норадреналин в адренэргнческих синапсах (темные синапсы) и ацетилхолин в холинэргических синапсах (светлые синапсы). Нервный импульс в химических синапсах передается с помощью этих медиаторов. В электрических (беспузырьковых) синапсах не имеется синаптических пузырьков с медиаторами. Однако в них наблюдается тесный контакт пре- и постсинаптических мембран.

В этом случае нервный импульс передается с помощью электрических потенциалов. Найдены и смешанные синапсы, где передача импульсов осуществляется, видимо, обоими указанными путями.

По производимому эффекту различают возбуждающие и тормозные синапсы. В тормозных синапсах медиатором может быть гамма-аминомаслянная кислота. По характеру распространения импульсов различают дивергентные и конвергентные синапсы. В дивергентных синапсах импульс из одного места их возникновения поступает на несколько нейронов, не связанных последовательно. В конвергентных синапсах импульсы из разных мест возникновения поступают, наоборот, к одному нейрону. Однако в каждом синапсе всегда имеет место только одностороннее проведение нервного импульса.

Нейроны посредством синапсов объединяются в нейронные цепи. Цепь нейронов, обеспечивающая проведение нервного импульса от рецептора чувствительного нейрона до двигательного нервного окончания, называется рефлекторной дугой. Существуют простые и сложные рефлекторные дуги.

Простая рефлекторная дугаобразована всего двумя нейронами: первый чувствительный и второй - двигательный. В сложных рефлекторных дугах между этими нейронами включены еще ассоциативные, вставочные нейроны. Различают также соматические и вегетативные рефлекторные дуги. Соматические рефлекторные дуги регулируют работу скелетной мускулатуры, а вегетативные - обеспечивают непроизвольное сокращение мускулатуры внутренних органов.

Свойства нервной ткани, нервный центр.

1. Возбудимость - это способность клетки, ткани, целостного ор-ганизма реагировать на разнообразные воздействия как внешней, так и внутренней среды организма.

Возбудимость проявляется в процессах возбуждения и торможе-ния.

Возбуждение - это форма ответной реакции на действие раздра-жителя, проявляющаяся в изменении процессов обмена веществ в клетках нервной ткани.

Изменение обмена веществ сопровождается передвижением через клеточную мембрану отрицательно и положительно заряженных ионов, что вызывает изменение активности клетки. Разность электрических потенциалов в покое между внутренним содержанием нервной клетки и ее наружной оболочкой составляет около 50-70 мВ. Эта разность потенциалов (называемая мембранным потенциалом покоя) возникает из-за неравенства концентрации ионов в цитоплазме клетки и внекле-точной среде (так как клеточная мембрана обладает избирательной проницаемостью к ионам Na+ и К+).

Возбуждение способно перемещаться из одного места клетки в другое, от одной клетки к другой.

Торможение - форма ответной реакции на действие раздражителя, противоположная возбуждению - прекращает деятельность в клетках, тканях, органах, ослабляет или препятствует ее возникновению. Воз-буждение в одних центрах сопровождается торможением в других, это обеспечивает согласованную работу органов и всего организма в целом. Это явление было открыто И. М. Сеченовым.

Торможение связано с наличием в центральной нервной системе специальных тормозных нейронов, синапсы которых выделяют тормоз-ные медиаторы, а следовательно, препятствуют возникновению потен-циала действия, и мембрана оказывается заблокированной. Каждый нейрон имеет множество возбуждающих и тормозящих синапсов.

Возбуждение и торможение являются выражением единого нерв-ного процесса, так как могут протекать в одном нейроне, сменяя друг друга. Процесс возбуждения и торможения являются активным состо-янием клетки, их протекание связано с изменением обменных реакций в нейроне, расходованием энергии.

2.Проводимость - это способность проводить возбуждение.

Рас-пространение по нервной ткани процессов возбуждения происходит следующим образом: возникнув в одной клетке, электрический (нерв-ный) импульс легко переходит на соседние клетки и может передавать-ся в любой участок нервной системы. Возникнув на новом участке, по-тенциал действия вызывает изменения концентрации ионов в соседнем участке и, соответственно, новый потенциал действия.

3.Раздражимость - способность под влиянием факторов внешней и внутренней среды (раздражителей) переходить из состояния покоя в состояние активности. Раздражение - процесс действия раздражи-теля. Биологические реакции - ответные изменения в деятельности клеток и целого организма. (Например: для рецепторов глаз раздра-житель - свет, для рецепторов кожи - давление.)

Нарушение проводимости и возбудимости нервной ткани (напри-мер, при общем наркозе) прекращает все психические процессы чело-века и приводит к полной потере сознания.

Поиск Лекций

ЛЕКЦИЯ 2

ФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ

ПЛАН ЛЕКЦИИ

1. Организация и функции нервной системы.

2. Структурная композиция и функции нейронов.

3. Функциональные свойства нервной ткани.

ОРГАНИЗАЦИЯ И ФУНКЦИИ НЕРВНОЙ СИСТЕМЫ

Нервная система человека – регулятор согласованной активно-сти всех систем жизнедеятельности организма делится на:

соматическую – с центральными отделами (ЦНС) – головным и спин-ным мозгом и периферическим отделом – 12-ю парами че-репно-моз-говых и спинальных нервов, иннервирующих кожный по-кров, мышцы, костную ткань, сус-тавы.

вегетативную (ВНС) – с высшим центром регуляции вегета-тивных функций гипоталаму-сом – и пери-фе-рическим отделом, вклю-чающим совокупность нервов и узлов симпатической , парасимпати-че-ской (вагусной) и метасимпатической систем иннервации внут-рен-них органов, служащих обеспечению общей жизнеспособности человека и специфической спортивной деятельности.

Нервная система человека объединяет в своей функциональной структуре порядка 25 миллиардов нейронов мозга и примерно 25 миллионов клеток находятся на периферии.

Ф у н к ц и и ЦНС:

1/ обеспечение целостной деятельности мозга в организации нейрофизиологических и психологических процес-сов сознательного поведения человека;

2/ управление сенсо-моторной, конструктивной и креативной, творческой деятельностью, направленной на достижение конкретных результатов индивидуального психофизического развития;

3/ освоение двигательных и инструментальных навыков, способ-ствующих совершенствованию моторики и интеллекта;

4/ формирование адаптивного, приспособительного поведения в изменяющихся условиях социальной и природной среды;

5/ взаимодействие с ВНС, эндокринной и иммунной системами организма в целях обеспечения жизнеспособности человека и его ин-дивидуального развития;

6/ соподчинение нейродинамических процессов мозга измене-ниям в состоянии индивидуального сознания, психики и мышления.

Нервная ткань мозга организована в сложную сеть тел и отро-стков нейронов и нейроглиальных клеток, упакованных в объёмно-пространственные конфигурации – функционально специфичные мо-дули, ядра или центры, которые содержат следующие типы ней-ронов:

<> сенсорные (чувствительные), афферентные, воспринимаю-щие энергию и информацию из внешней и внутренней среды;

<> моторные (двигательные), эфферентные, передающие ин-формацию в системе центрального управления движениями;

<> промежуточные (вставочные), обеспечивающие функцио-нально необходимое взаимодейст-вие между первыми двумя типами нейронов или регуляцию их ритмической активности.

Нейроны – функциональные, структурные, генетические, ин-формационные единицы головного и спинного мозга — обладают осо-быми свойствами:

<> способностью изменять ритмически свою ак-тивность, генерировать электрические потенциалы – нервные им-пульсы с определённой частотой, создавать электро-магнитные поля;

<> вступать в резонансные межнейронные взаимодействия в связи с притоком энергии и информации через нейронные сети;

<> посред-ством импульсных и нейрохимических кодов передавать конкретную смысловую информацию, регулирующие команды к другим нейро-нам, нервным центрам головного и спинного мозга, мышечным клет-кам и вегетативным органам;

<> поддерживать целостность собст-венной структуры, благодаря программам, закодированным в ядер-ном генетическом аппарате (ДНК и РНК);

<> синтезировать специ-фические нейропептиды, нейрогормоны, медиаторы – посредники синаптических связей, адаптируя их продукцию к функциям и уровню импульсной активности нейрона;

<> передавать волны воз-буждения – потенциалы действия (ПД) только однонаправленно – от тела нейрона по аксону через химические синапсы аксотерминалей.

Нейроглия – (от греч. – glia клей ) связующая, опорная ткань мозга, составляет около 50% его объёма; глиальные клетки почти в 10 раз превышают количество нейронов.

Глиальные структуры обеспечивают:

<> функцио-нальную независимость нервных цен-тров от других образований мозга;

<> отграничивают местоположение отдельных нейронов;

<> обеспечивают питание (трофику) нейронов, доставку энерге-ти-ческих и пластических субстратов для их функций и обновления структур-ных компонентов;

<> генерируют электрические поля;

<> поддержи-вают метаболическую, нейрохимическую и электрическую актив-ность нейронов;

<> получают необходимые энергетические и пластиче-ские субстраты от популяции «капиллярной» глии, локализующейся вокруг сосудистой сети кровоснабжения мозга.

2. СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ КОМПОЗИЦИЯ НЕЙРОНОВ

Нейрофизиологические функции реализуются благодаря соот-ветствующей структурной композиции нейронов, включающей в себя следующие цитологические элементы: (см. рис. 1)

1 – сома (тело), имеет вариативные размеры и форму в зависи-мости от функционального назначения нейрона;

2 – мембрана , покрывающая тело, дендриты и аксон клетки, из-бирательно проницаемая для ионов калия, натрия, кальция, хлора;

3 – дендритное дерево – рецепторная зона восприятия электро-химических стимулов от других нейронов через межнейронные си-наптические контакты на дендритных шипиках;

4 – ядро с генетическим аппаратом (ДНК, РНК) – «мозг ней-рона», регулирует синтез полипептидов, обновляет и поддерживает целостность структуры и функциональную специфичность клетки;

5 – ядрышко – «сердце нейрона» – проявляет высокую реактив-ность в отношении физиологического состояния нейрона, участвует в синтезе РНК, белков и липидов, усиленно снабжая ими цитоплазму при нарастании процессов возбуждения;

6 – клеточная плазма , содержит: ионы K, Na, Ca, Cl в концентра-ции, необходимой для электродинамиче-ских реакций; митохондрии, обеспечивающие окислительный метаболизм; микроканальцы и мик-роволоконца цитоскелета и внутриклеточного транспорта;

7 – аксон (от лат. axis — ось) – нервное волокно, миэлинизиро-ванный проводник волн возбуждения, переносящих энергию и ин-формацию от тела нейрона к другим нейронам посредством вихреоб-разных токов ионизированной плазмы;

8 – аксонный холмик и инициальный сегмент , где формируется распространяющееся нервное возбуждение – потенциалы действия;

9 – терминали — конечные разветвления аксона, отличаются по количеству, размерам и способам ветвления в нейронах разных функ-циональных типов;

10 – синапсы (контакты) – мембранные и цитоплазматические образования со скоплениями пузырьков-молекул нейромедиатора, ак-тивирующего проницаемость постсинаптической мембраны для ион-ных токов. Различают три типа синапсов : аксо-дендритные (возбу-ждающие), аксо-соматические (чаще – тормозящие) и аксо-аксонные (регулирующие передачу возбуждения через терминали).

М – митохондрия,

Я – ядро,

Яд.– ядрышко,

Р – рибосомы,

В – возбуждающий

Т – тор-мозящий синапс,

Д – дендриты,

А – аксон,

X – аксонный холмик,

Ш – Шванновская клетка

миелиновой оболочки,

О – окончание аксона,

Н – следующий нейрон.

Рис. 1.

Функциональная организация нейрона

ФУНКЦИОНАЛЬНЫЕ Свойства неРВНОЙ ТКАНИ

1}. Возбудимость – фундаментальное природное свойство нерв-ных и мышечных клеток и тканей, проявляется в виде изменения электрической активности, генерации электромагнитного поля вокруг нейронов, целого мозга и мышц, изменения скорости проведения волны возбуждения по нервным и мышечным волокнам под воз-дей-ствием стимулов различной энерге-тиче-ской природы: механической, химической, термодинамиче-ской, лу-чистой, электрической, магнети-ческой и психической.

Возбудимость в нейронах проявляется в не-скольких формах возбуждения или ритмов электрической активности :

1/ потенциалов относительного покоя (ПП) при отрица-тельном заряде мембраны нейрона,

2/возбуждающих и тормозных потенциалов постсинаптических мембран (ВПСП и ТПСП)

3/распространяющихся потенциалов действия (ПД), суммирующих энергию потоков афферентных импульсов, поступающих через мно-жество дендритных синапсов.

Посредники передачи возбуждающих или тормозных сигналов в химических синапсах – медиаторы , спе-цифические активаторы и регуляторы трансмембранных ионных то-ков. Они синтезируются в телах или окончаниях нейронов, обладают дифференцированными биохимическими эффектами во взаимодейст-вии с мембранными рецепторами и отличаются по своим информаци-онным влияниям на нервные процессы различных отделов мозга.

Возбудимость различна в структурах мозга, отличающихся своими функциями, своей реактивностью, ролью в регуляции жизне-деятельности организма.

Ее пределы оцениваются порогами интен-сивности и длительности внешней стимуляции. Порог – это мини-мальная сила и время сти-му-лирующего энергетического воздействия, вызывающего ощутимую ответную ре-ак-цию ткани– развитие элек-трического процесса возбуждения. Для сравнения укажем соотноше-ние порогов и качества возбудимости нервной и мышечной тканей:

©2015-2018 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Нарушение авторских прав и Нарушение персональных данных

НЕРВНАЯ ТКАНЬ

Общая характеристика, классификация и развитие нервной ткани.

Нервная ткань - это система взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздражений, возбуждения, выработки импульса и его передачи. Она является основой строения органов нервной системы, обеспечивающих регуляцию всех тканей и органов, их интеграцию в организме и связь с окружающей средой.

В нервной ткани выделяют два типа клеток – нервные и глиальные. Нервные клетки (нейроны, или нейроциты) - основные структурные компоненты нервной ткани, выполняющие специфическую функцию. Нейроглия обеспечивает существование и функционирование нервных клеток, осуществляя опорную, трофическую, разграничительную, секреторную и защитную функции.

КЛЕТОЧНЫЙ СОСТАВ НЕРВНОЙ ТКАНИ

Нейроны, или нейроциты, - специализированные клетки нервной системы, ответственные за получение, обработку и передачу сигнала (на: другие нейроны, мышечные или секреторные клетки). Нейрон является морфологически и функционально самостоятельной единицей, но с помощью своих отростков осуществляет синаптический контакт с другими нейронами, образуя рефлекторные дуги - звенья цепи, из которой построена нервная система. В зависимости от функции в рефлекторной дуге различают три типа нейронов:

афферентные

ассоциативные

эфферентные

Афферентные (или рецепторные, чувствительные) нейроны воспринимают импульс, эфферентные (или двигательные) передают его на ткани рабочих органов, побуждая их к действию, а ассоциативные (или вставочные) осуществляют связь между нейронами.

Подавляющее большинство нейронов (99,9%) — ассоциативные.

Нейроны отличаются большим разнообразием форм и размеров. Например, диаметр тел клеток-зерен коры мозжечка 4-6 мкм, а гигантских пирамидных нейронов двигательной зоны коры большого мозга - 130-150 мкм. Нейроны состоят из тела (или перикариона) и отростков: одного аксона и различного числа ветвящихся дендритов. По количеству отростков различают три типа нейронов:

биполярные,

мультиполярные (большинство) и

униполярные нейроны.

Униполярные нейроны имеют только аксон (у высших животных и человека обычно не встречаются). Биполярные — имеют аксон и один дендрит. Мультиполярные нейроны (подавляющее большинство нейронов) имеют один аксон и много дендритов. Разновидностью биполярных нейронов является псевдо-униполярный нейрон, от тела которого отходит один общий вырост - отросток, разделяющийся затем на дендрит и аксон. Псевдоуниполярные нейроны присутствуют в спинальных ганглиях, биполярные - в органах чувств. Большинство нейронов — мультиполярные. Их формы чрезвычайно разнообразны. Аксон и его коллатерали оканчиваются, разветвляясь на несколько веточек, называемых телодендронами, последние заканчиваются терминальными утолщениями.

Трехмерная область, в которой ветвятся дендриты одного нейрона, называется дендритным полем нейрона.

Дендриты представляют собой истинные выпячивания тела клетки. Они содержат те же органеллы, что и тело клетки: глыбки хроматофильной субстанции (т.е. гранулярной эндоплазматической сети и полисом), митохондрии, большое количество нейротубул (или микротрубочек) и нейрофиламентов. За счет дендритов рецепторная поверхность нейрона увеличивается в 1000 и более раз.

Аксон - это отросток, по которому импульс передается от тела клетки. Он содержит митохондрии, нейротубулы и нейрофиламенты, а также гладкую эндоплазматическую сеть.

Подавляющее большинство нейронов человека содержит одно округлое светлое ядро, расположенное в центре клетки. Двуядерные и тем более многоядерные нейроны встречаются крайне редко.

Плазмолемма нейрона является возбудимой мембраной, т.е. обладает способностью генерировать и проводить импульс. Ее интегральными белками являются белки, функционирующие как ионно-избирательные каналы, и рецепторные белки, вызывающие реакции нейронов на специфические стимулы. В нейроне мембранный потенциал покоя равен -60 -70 мВ. Потенциал покоя создается за счет выведения Na+ из клетки. Большинство Na+- и К+-каналов при этом закрыты. Переход каналов из закрытого состояния в открытое регулируется мембранным потенциалом.

В результате поступления возбуждающего импульса на плазмолемме клетки происходит частичная деполяризация. Когда она достигает критического (порогового) уровня, натриевые каналы открываются, позволяя ионам Na+ войти в клетку. Деполяризация усиливается, и при этом открывается еще больше натриевых каналов. Калиевые каналы также открываются, но медленнее и на более продолжительный срок, что позволяет К+ выйти из клетки и восстановить потенциал до прежнего уровня. Через 1-2 мс (т.н.

рефрактерный период) каналы возвращаются в нормальное состояние, и мембрана может вновь отвечать на стимулы.

Итак, распространение потенциала действия обусловлено вхождением в нейрон ионов Na+, которые могут деполяризовать соседний участок плазмолеммы, что в свою очередь создает потенциал действия на новом месте.

Из элементов цитоскелета в цитоплазме нейронов присутствуют нейрофиламенты и нейротубулы. Пучки нейрофиламентов на препаратах, импрегнированных серебром, видны в виде нитей - нейрофибрилл. Нейрофибриллы образуют сеть в теле нейрона, а в отростках расположены параллельно. Нейротубулы и нейрофиламенты участвуют в поддержании формы клеток, росте отростков и аксональном транспорте.

Отдельной разновидностью нейронов являются секреторные нейроны . Способность синтезировать и секретировать биологически активные вещества, в частности нейромедиаторы, свойственна всем нейроцитам. Однако существуют нейроциты, специализированные преимущественно для выполнения этой функции, - секреторные нейроны, например клетки нейросекреторных ядер гипоталамической области головного мозга. В цитоплазме таких нейронов и в их аксонах находятся различной величины гранулы нейросекрета, содержащие белок, а в некоторых случаях липиды и полисахариды. Гранулы нейросекрета выводятся непосредственно в кровь (например, с помощью т.н. аксо-вазальных синапсов) или же в мозговую жидкость. Нейросекреты выполняют роль нейрорегуляторов, участвуя во взаимодействии нервной и гуморальной систем интеграции.

НЕЙРОГЛИЯ

Нейроны - это высокоспециализированные клетки, существующие и функционирующие в строго определенной среде. Такую среду им обеспечивает нейроглия. Нейроглия выполняет следующие функции: опорную, трофическую, разграничительную, поддержание постоянства среды вокруг нейронов, защитную, секреторную. Различают глию центральной и периферической нервной системы.

Клетки глии центральной нервной системы делятся на макроглию и микроглию.

Макроглия

Макроглия развивается из глиобластов нервной трубки и включает: эпендимоциты, астроциты и олигодендроглиоциты.

Эпендимоциты выстилают желудочки головного мозга и центральный канал спинного мозга. Эти клетки цилиндрической формы. Они образуют слой типа эпителия, носящий название эпендимы. Между соседними клетками эпендимы имеются щелевидные соединения и пояски сцепления, но плотные соединения отсутствуют, так что цереброспинальная жидкость может проникать между эпендимоцитами в нервную ткань. Большинство эпендимоцитов имеют подвижные реснички, вызывающие ток цереброспинальной жидкости. Базальная поверхность большинства эпендимоцитов ровная, но некоторые клетки имеют длинный отросток, идущий глубоко в нервную ткань. Такие клетки называются таницитами. Они многочисленны в дне III желудочка. Считается, что эти клетки передают информацию о составе цереброспинальной жидкости на первичную капиллярную сеть воротной системы гипофиза. Эпендимный эпителий сосудистых сплетений желудочков продуцирует цереброспинальную жидкость (ликвор).

Астроциты - клетки отростчатой формы, бедные органеллами. Они выполняют в основном опорную и трофическую функции. Различают два типа астроцитов — протоплазматические и волокнистые. Протоплазматические астроциты локализуются в сером веществе центральной нервной системы, а волокнистые астроциты — преимущественно в белом веществе.

Протоплазматические астроциты характеризуются короткими сильно ветвящимися отростками и светлым сферическим ядром. Отростки астроцитов тянутся к базальным мембранам капилляров, к телам и дендритам нейронов, окружая синапсы и отделяя (изолируя) их друг от друга, а также к мягкой мозговой оболочке, образуя пиоглиальную мембрану, граничащую с субарахноидальным пространством. Подходя к капиллярам, их отростки образуют расширенные «ножки», полностью окружающие сосуд. Астроциты накапливают и передают вещества от капилляров к нейронам, захватывают избыток экстрацеллюлярного калия и других веществ, таких как нейромедиаторы, из экстрацеллюлярного пространства после интенсивной нейрональной активности.

Олигодендроциты – имеют более мелкие по сравнению с астроцитами и более интенсивно окрашивающиеся ядра. Их отростки немногочисленны. Олигодендроглиоциты присутствуют как в сером, так и в белом веществе. В сером веществе они локализуются вблизи перикарионов. В белом веществе их отростки образуют миелиновый слой в миелиновых нервных волокнах, причем, в противоположность аналогичным клеткам периферической нервной системы – нейролеммоцитам, один олигодендроглиоцит может участвовать в миелинизации сразу нескольких аксонов.

Микроглия

Микроглия представляет собой фагоцитирующие клетки, относящиеся к системе мононуклеарных фагоцитов и происходящие из стволовой кроветворной клетки (возможно, из премоноцитов красного костного мозга). Функция микроглии - защита от инфекции и повреждения, и удаление продуктов разрушения нервной ткани. Клетки микроглии характеризуются небольшими размерами, телами продолговатой формы. Их короткие отростки имеют на своей поверхности вторичные и третичные ответвления, что придает клеткам «колючий» вид. Описанная морфология характерна для типичной (ветвистой, или покоящейся) микроглии полностью сформированной центральной нервной системы. Она обладает слабой фагоцитарной активностью. Ветвистая микроглия встречается как в сером, так и в белом веществе центральной нервной системы.

В развивающемся мозгу млекопитающих обнаруживается временная форма микроглии - амебоидная микроглия. Клетки амебоидной микроглии формируют выросты – филоподии и складки плазмолеммы. В их цитоплазме присутствуют многочисленные фаголизосомы и пластинчатые тельца. Амебоидные микроглиальные тельца отличаются высокой активностью лизосомальных ферментов. Активно фагоцитирующая амебоидная микроглия необходима в раннем постнатальном периоде, когда гематоэнцефалический барьер еще не вполне развит и вещества из крови легко попадают в центральную нервную систему. Считают также, что она способствует удалению обломков клеток, появляющихся в результате запрограммированной гибели избыточных нейронов и их отростков в процессе дифференцировки нервной системы. Полагают, что, созревая, амебоидные микроглиальные клетки превращаются в ветвистую микроглию.

Реактивная микроглия появляется после травмы в любой области мозга. Она не имеет ветвящихся отростков, как покоящаяся микроглия, не имеет псевдоподий и филоподий, как амебоидная микроглия. В цитоплазме клеток реактивной микроглии присутствуют плотные тельца, липидные включения, лизосомы. Есть данные о том, что реактивная микроглия формируется вследствие активации покоящейся микроглии при травмах центральной нервной системы.

Рассмотренные выше глиальные элементы относились к центральной нервной системе.

Глия периферической нервной системы в отличие от макроглии центральной нервной системы происходит из нервного гребня. К периферической нейроглии относятся: нейролеммоциты (или шванновские клетки) и глиоциты ганглиев (или мантийные глиоциты).

Нейролеммоциты Шванна формируют оболочки отростков нервных клеток в нервных волокнах периферической нервной системы. Мантийные глиоциты ганглиев окружают тела нейронов в нервных узлах и участвуют в обмене веществ этих нейронов.

НЕРВНЫЕ ВОЛОКНА

Отростки нервных клеток, покрытые оболочками, называются нервными волокнами. По строению оболочек различают миелиновые и безмиелиновые нервные волокна. Отросток нервной клетки в нервном волокне называют осевым цилиндром, или аксоном, так как чаще всего (за исключением чувствительных нервов) в составе нервных волокон находятся именно аксоны.

В центральной нервной системе оболочки отростков нейронов образуются отростками олигодендроглиоцитов, а в периферической - нейролеммоцитами Шванна.

Безмиелиновые нервные волокна находятся преимущественно в составе автономной, или вегетативной, нервной системы. Нейролеммоциты оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи. В нервных волокнах внутренних органов, как правило, в таком тяже имеется не один, а несколько осевых цилиндров, принадлежащих различным нейронам. Они могут, покидая одно волокно, переходить в соседнее. Такие волокна, содержащие несколько осевых цилиндров, называются волокнами кабельного типа. По мере погружения осевых цилиндров в тяж нейролеммоцитов оболочки последних прогибаются, плотно охватывают осевые цилиндры и, смыкаясь над ними, образуют глубокие складки, на дне которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки оболочки нейролеммоцита образуют сдвоенную мембрану - мезаксон, на которой как бы подвешен осевой цилиндр.

Миелиновые нервные волокна встречаются как в центральной, так и в периферической нервной системе. Они значительно толще безмиелиновых нервных волокон. Они также состоят из осевого цилиндра, «одетого» оболочкой из нейролеммоцитов Шванна, но диаметр осевых цилиндров этого типа волокон значительно толще, а оболочка сложнее.

Миелиновый слой оболочки такого волокна содержит значительное количество липидов, поэтому при обработке осмиевой кислотой он окрашивается в темно-коричневый цвет. В миелиновом слое периодически встречаются узкие светлые линии-насечки миелина, или насечки Шмидта - Лантермана. Через определенные интервалы (1-2 мм) видны участки волокна, лишенные миелинового слоя, - это т.н. узловатые перехваты, или перехваты Ранвье.

Нервная ткань является основным компонентом нервной системы. Она состоит из нервных клеток и клеток нейроглии. Нервные клетки способны под действием раздражения приходить в состояние возбуждения, вырабатывать импульсы и передавать их. Эти свойства определяют специфическую функцию нервной системы. Нейроглия органически связана с нервными клетками и осуществляет трофическую, секреторную, защитную функции и функцию опоры.

Нервные клетки - нейроны, или нейроциты, представляют собой отростчатые клетки. Размеры тела нейрона колеблются в значительных пределах (от 3 - 4 до 130 мкм). По форме нервные клетки также очень разные (рис. 10). Отростки нервных клеток проводят нервный импульс из одной части тела человека в другую, длина отростков от нескольких микрон до 1,0 - 1,5 м.


Рис. 10. Нейроны (нервные клетки). А - мультиполярный нейрон; Б - псевдоуниполярный нейрон; В - биполярный нейрон; 1 - аксон; 2 - дендрит

Различают два вида отростков нервной клетки. Отростки первого вида проводят импульсы от тела нервной клетки к другим клеткам или тканям рабочих органов, они называются нейритами, или аксонами. Нервная клетка имеет всегда только один аксон, который заканчивается концевым аппаратом на другом нейроне или в мышце, железе. Отростки второго вида называются дендритами, они древовидно ветвятся. Их количество у разных нейронов различно. Эти отростки проводят нервные импульсы к телу нервной клетки. Дендриты чувствительных нейронов имеют на периферическом конце специальные воспринимающие аппараты - чувствительные нервные окончания, или рецепторы.

По количеству отростков нейроны делятся на биполярные (двухполюсные) - с двумя отростками, мультиполярные (многополюсные) - с несколькими отростками. Особо выделяют псевдоуниполярные (ложные однополюсные) нейроны, нейрит и дендрит которых начинаются от общего выроста тела клетки с последующим Т-образным делением. Такая форма характерна для чувствительных нейроцитов.

Нервная клетка имеет одно ядро, содержащее 2 - 3 ядрышка. Цитоплазма нейронов, помимо органелл, характерных для любых клеток, содержит хроматофильное вещество (вещество Ниссля) и нейрофибриллярный аппарат. Хроматофильное вещество представляет собой зернистость, образующую в теле клетки и дендритах нерезко ограниченны глыбки, окрашивающиеся основными красителями. Оно меняется в зависимости от функционального состояния клетки. В условиях перенапряжения, травмы (перерезка отростков, отравление, кислородное голодание и др.) глыбки распадаются и исчезают. Этот процесс получил название хроматолиза, т. е. растворения.

Другим характерным компонентом цитоплазмы нервных клеток являются тонкие нити - нейрофибриллы. В отростках они лежат вдоль волокон параллельно друг другу, в теле клетки образуют сеть.

Нейроглия представлена клетками различной формы и величины, которые делятся на две группы: макроглию (глиоциты) и микроглию (глиальные макрофаги) (рис. 11). Среди глиоцитов различают эпендимоциты, астроциты и олигодендроциты. Эпендимоциты выстилают спинномозговой канал и желудочки головного мозга. Астроциты образуют опорный аппарат центральной нервной системы. Олигодендроциты окружают тела нейронов в центральной и периферической нервной системе, образуют оболочки нервных волокон и входят в состав нервных окончаний. Клетки микроглии подвижны и способны фагоцитировать.

Нервными волокнами называются отростки нервных клеток (осевые цилиндры), покрытые оболочками. Оболочка нервных волокон (нейролемма) образована клетками, которые называются нейролеммоцитами (шванновские клетки). В зависимости от строения оболочки различают безмиелиновые (безмякотные) и миелиновые (мякотные) нервные волокна. Безмиелиновые нервные волокна характеризуются тем, что леммоциты в них лежат плотно друг к другу и образуют тяжи протоплазмы. В такой оболочке располагаются один или несколько осевых цилиндров. Миелиновые нервные волокна имеют более толстую оболочку, внутренняя часть которой содержит миелин. При обработке осмиевой кислотой гистологических препаратов миелиновая оболочка окрашивается в темно-коричневый цвет. На определенном расстоянии в миелиновом волокне расположены косые белые линии - насечки миелина и сужения - узлы нервного волокна (перехваты Ранвье). Они соответствуют границам леммоцитов. Миелиновые волокна толще безмиелиновых, их диаметр 1 - 20 мкм.

Пучки миелиновых и безмиелиновых нервных волокон, покрытые соединительнотканной оболочкой, образуют нервные стволы, или нервы. Соединительнотканная оболочка нерва называется эпиневрием. Она проникает в толщу нерва и покрывает пучки нервных волокон (периневрий) и отдельные волокна (эндоневрий). В эпиневрии располагаются кровеносные и лимфатические сосуды, которые проходят в периневрий и эндоневрий.

Перерезка нервных волокон вызывает дегенерацию периферического отростка нервного волокна, при которой он распадается на участку различной величины. На месте перерезки возникает воспалительная реакция и образуется рубец, через который в дальнейшем возможно прорастание центральных отрезков нервных волокон при регенерации (восстановлении) нерва. Регенерация нервного волокна начинается с интенсивного размножения леммоцитов и образования из них своеобразных лент, проникающих в рубцовую ткань. Осевые цилиндры центральных отростков образуют на концах утолщения - колбы роста и врастают в рубцовую ткань и ленты леммоцитов. Периферический нерв растет со скоростью 1 - 4 мм/су т.

Нервные волокна заканчиваются концевыми аппаратами - нервными окончаниями (рис. 12). По функции различают три группы нервных окончаний: чувствительные, или рецепторы, двигательные и секреторные, или эффекторы, и окончания на других нейронах - межнейрональные синапсы.


Рис. 12. Нервные окончания. а - нервно-мышечное окончание: 1 - нервное волокно; 2 - мышечное волокно; б - свободное нервное окончание в соединительной ткани; в - пластинчатое тельце (тельце Фатера - Пачини): 1 - наружная колба (луковица); 2 - внутренняя колба (луковица); 3 - концевой отдел нервного волокна

Чувствительные нервные окончания (рецепторы) образованы концевыми разветвлениями дендритов чувствительных нейронов. Они воспринимают раздражения из внешней среды (экстерорецепторы) и от внутренних органов (интерорецепторы). Различают свободные нервные окончания, состоящие только из концевого ветвления отростка нервной клетки, и несвободные, если в образовании нервного окончания принимают участие элементы нейроглии. Несвободные нервные окончания могут быть покрыты соединительнотканной капсулой. Такие окончания называются капсулированными: например, пластинчатого тельца (тельца Фатера - Пачини). Рецепторы скелетных мышц называются нервно-мышечными веретенами. Они состоят из нервных волокон, ветвящихся на поверхности мышечного волокна в виде спирали.

Эффекторы бывают двух типов - двигательные и секреторные. Двигательные (моторные) нервные окончания являются концевыми разветвлениями нейритов двигательных клеток в мышечной ткани и называются нервно-мышечными окончаниями. Секреторные окончания в железах образуют нервно-железистые окончания. Названные виды нервных окончаний представляют собой нервно-тканевой синапс.

Связь между нервными клетками осуществляется при помощи синапсов. Они образованы концевыми ветвлениями нейрита одной клетки на теле, дендритах или аксонах другой. В синапсе нервный импульс проходит только в одном направлении (с нейрита на тело или дендриты другой клетки). В различных отделах нервной системы они устроены по-разному.

Общая физиология возбудимых тканей

Все живые организмы и любая их клетка обладают раздражимостью, т. е. способностью отвечать на внешнее раздражение изменением обмена веществ.

Наряду с раздражимостью три вида ткани: нервная, мышечная и железистая - обладают возбудимостью. В ответ на раздражение в возбудимых тканях возникает процесс возбуждения.

Возбуждение представляет собой сложную биологическую реакцию. Обязательными признаками возбуждения являются изменение мембранного потенциала, усиление обмена веществ (повышение потребления О 2 , выделение СО 2 и тепла) и возникновение деятельности, присущей данной ткани: мышца сокращается, железа выделяет секрет, нервная клетка генерирует электрические импульсы. В момент возбуждения ткань из состояния физиологического покоя переходит к присущей ей деятельности.

Следовательно, возбудимостью называют способность ткани отвечать на раздражение возбуждением. Возбудимость - это свойство ткани, тогда как возбуждение - это процесс, ответная реакция на раздражение.

Важнейшим признаком распространяющегося возбуждения является возникновение нервного импульса, или потенциала действия, благодаря которому возбуждение не остается на месте, а проводится по возбудимым тканям. Раздражителем, вызывающим возбуждение, может быть любой агент внешней или внутренней среды (электрический, химический, механический, термический и др.) при условии, что он является достаточно сильным, действует достаточно долго и нарастание его силы происходит достаточно быстро.

Биоэлектрические явления

Биоэлектрические явления - "животное электричество" было открыто в 1791 г. итальянским ученым Гальвани. Данные современной мембранной теории происхождения биоэлектрических явлений получены Ходжкиным, Кацом и Хаксли в исследованиях, проведенных с гигантским нервным волокном кальмара (диаметром 1 мм) в 1952 г.

Плазматическая мембрана клетки (плазмолемма), ограничивающая снаружи цитоплазму клетки, имеет

толщину около 10 нм и состоит из двойного слоя липидов, в который погружены глобулы белков (молекулы, свернутые в клубки или спирали). Белки выполняют функции ферментов, рецепторов, транспортных систем, ионных каналов. Они либо частично, либо целиком погружены в липидный слой мембраны (рис. 13). В состав мембраны входит также небольшое количество углеводов.


Рис. 13. Модель клеточной мембраны как жидкой мозаики из липидов и белков - поперечный разрез (Стерки П., 1984). а - липиды; в - белки

Сквозь мембрану движутся различные вещества в клетку и из клетки. Регуляция этого процесса - одна из основных функций мембраны. Основными ее свойствами являются избирательная и изменчивая проницаемость. Для одних веществ она служит барьером, для других - входными воротами. Вещества могут проходить через мембрану по закону концентрационного градиента (диффузия от большей концентрации к меньшей), по электрохимическому градиенту (разная концентрация заряженных ионов), путем активного транспорта - работа натрий-калиевых насосов.

Мембранный потенциал, или потенциал покоя. Между наружной поверхностью клетки и ее цитоплазмой существует разность потенциалов порядка 60 - 90 мВ (милливольт) , называемая мембранным потенциалом, или потенциалом покоя. Его можно обнаружить при помощи микроэлектродной методики. Микроэлектрод представляет собой тончайший стеклянный капилляр с диаметром кончика 0,2 - 0,5 мкм. Его заполняют раствором электролита (КС1). Второй электрод обычных размеров погружают в раствор Рингера, в котором находится исследуемый объект. Через усилитель биопотенциалов электроды подводят к осциллографу. Если под микроскопом с помощью микроманипулятора микроэлектрод ввести внутрь нервной клетки, нервного или мышечного волокна, то в момент прокола осциллограф покажет разность потенциалов - потенциал покоя (рис. 14). Микроэлектрод настолько тонок, что он практически не повреждает мембраны.


Рис. 14. Измерение потенциала покоя мышечного волокна (А) при помощи внутриклеточного микроэлектрода (схема). М - микроэлектрод; И - индифферентный электрод. Луч на экране осциллографа показан стрелкой

Мембрайно-ионная теория объясняет происхождение потенциала покоя неодинаковой концентрацией несущих электрические заряды К + , Na + и Сl - внутри и вне клетки и различной проницаемостью для них мембраны.

В клетке в 30 - 50 раз больше К + и в 8 - 10 раз меньше Na + , чем в тканевой жидкости. Следовательно, внутри клетки преобладают К + , снаружи - Na + . Основным анионом тканевой жидкости является Сl - . В клетке преобладают крупные органические анионы, которые не могут диффундировать сквозь мембрану. (Как известно, катионы имеют положительный заряд, а анионы - отрицательный.) Состояние неодинаковой ионной концентрации по обе стороны плазматической мембраны называют ионной асимметрией. Она поддерживается работой натрий-калиевых насосов, которые непрерывно перекачивают Na + из клетки и К + в клетку. Работа эта осуществляется с затратой энергии, освобождающейся при расщеплении аденозинтрифосфорной кислоты. Ионная асимметрия - физиологическое явление, сохраняющееся пока клетка жива.

В покое проницаемость мембраны значительно выше для К + , чем для Na + . В силу высокой концентрации ионы К + стремятся выйти из клетки наружу. Сквозь мембрану они проникают на наружную поверхность клетки, но дальше уйти не могут. Крупные анионы клетки, для которых мембрана непроницаема, не могут последовать за калием, и скапливаются на внутренней поверхности мембраны, создавая здесь отрицательный заряд, который удерживает электростатической связью проскочившие через мембрану положительно заряженные ионы калия. Таким образом возникает поляризация мембраны, потенциал покоя; по обе ее стороны образуется двойной электрический слой: снаружи из положительно заряженных ионов К + , а внутри из отрицательно заряженных различных крупных анионов.

Потенциал действия. Потенциал покоя сохраняется до тех пор, пока не возникло возбуждение. Под действием раздражителя проницаемость мембраны для Na + повышается. Концентрация Na + снаружи клетки в 10 раз больше, чем внутри нее. Поэтому Na + сначала медленно, а затем лавинообразно устремляются внутрь. Ионы натрия заряжены положительно, поэтому происходит перезарядка мембраны и ее внутренняя поверхность приобретает положительный заряд, а наружная - отрицательный. Таким образом происходит реверсия потенциала, изменение его на обратный знак. Он становится отрицательным снаружи и положительным внутри клетки. Этим объясняется давно известный факт, что возбужденный участок становится электроотрицательным по отношению к находящемуся в покое. Однако повышение проницаемости мембраны для Na + длится недолго; она быстро снижается и повышается для К + . Это вызывает усиление потока положительно заряженных ионов из клетки во внешний раствор. В итоге происходит реполяризация мембраны, ее наружная поверхность приобретает снова положительный заряд, а внутренняя - отрицательный.

Электрические изменения мембраны в процессе возбуждения получили название потенциала действия. Длительность его измеряется тысячными долями секунды (миллисекундами), амплитуда равна 90 - 120 мВ.

Во время возбуждения Na + входят в клетку, а К + выходят наружу. Казалось бы, что концентрация ионов в клетке должна меняться. Как показали опыты, даже многочасовое раздражение нерва и возникновение в нем десятков тысяч импульсов не изменяют содержания в нем Na + и К + . Это объясняется работой натрий-калиевого насоса, который после каждого цикла возбуждения разводит ионы по местам: накачивает К + обратно в клетку и выводит из нее Na + . Насос работает на энергии внутриклеточного обмена веществ. Это доказывается тем, что яды, прекращающие обмен веществ, прекращают работу насоса.

Потенциал действия, возникая в возбужденном участке, становится раздражителем для соседнего невозбужденного участка мышечного или нервного волокна и обеспечивает проведение возбуждения вдоль мышцы или нерва.

Возбудимость различных тканей неодинакова. Наиболее высокой возбудимостью отличаются рецепторы, специализированные структуры, приспособленные к улавливанию изменений во внешней среде и внутренней среде организма. Затем следует нервная, мышечная и железистая ткани.

Мерой возбудимости является порог раздражения, т. е. та наименьшая сила раздражителя, которая способна вызвать возбуждение. Порог раздражения иначе называют реобазой. Чем выше возбудимость ткани, тем меньшей силы раздражитель способен вызвать возбуждение.

Кроме того, возбудимость можно характеризовать тем временем, в течение которого должен действовать раздражитель, чтобы вызвать возбуждение, иначе говоря, порогом времени. Наименьшее время, в течение которого должен действовать электрический ток пороговой силы, чтобы вызвать возбуждение, называется полезным временем. Полезное время характеризует скорость течения процесса возбуждения.

Возбудимость тканей увеличивается в процессе умеренной деятельности и снижается при утомлении. Возбудимость претерпевает фазовые изменения во время возбуждения. Как только в возбудимой ткани возникает процесс возбуждения, она утрачивает способность отвечать на новое, даже сильное раздражение. Это состояние называется абсолютной невозбудимостью, или абсолютной рефрактерной фазой. Через некоторое время возбудимость начинает восстанавливаться. На пороговое раздражение ткань еще не отвечает, но на сильное раздражение отвечает возбуждением, хотя амплитуда возникающего потенциала действия в это время значительно снижена, т. е. процесс возбуждения слаб. Это фаза относительной рефрактерности. После нее возникает фаза повышенной возбудимости или супернормальности. В это время можно вызвать возбуждение очень слабым раздражителем, ниже пороговой силы. Только после этого возбудимость приходит в норму.

Для исследования состояния возбудимости мышечной или нервной ткани наносят два раздражения друг за другом через определенные интервалы. Первое вызывает возбуждение, а второе - тестирующее - испытывает возбудимость. Если на второе раздражение реакции нет, значит, ткань невозбудима; реакция слабая - возбудимость понижена; реакция усилена - возбудимость повышена. Так, если на сердце наносить раздражение во время систолы, то возбуждения не последует, к концу диастолы раздражение вызывает внеочередное сокращение - экстрасистолу, что свидетельствует о восстановлении возбудимости.

На рис. 15 сопоставлены во времени процесс возбуждения, выражением которого служит потенциал действия, и фазовые изменения возбудимости. Видно, что абсолютная рефрактерная фаза соответствует восходящей части пика - деполяризации, фаза относительной рефрактерности - нисходящей части пика - реполяризации мембраны и фаза повышенной возбудимости - отрицательному следовому потенциалу.


Рис. 15. Схемы изменений потенциала действия (а) и возбудимости нервного волокна (б) в различные фазы потенциала действия. 1 - местный процесс; 2 - фаза деполяризации; 3 - фаза реполяризации. Пунктиром на рисунке обозначены потенциал покоя и исходный уровень возбудимости

Проведение возбуждения по нерву

Нерву присущи два физиологических свойства - возбудимость и проводимость, т. е. способность на раздражение отвечать возбуждением и проводить его. Проведение возбуждения является единственной функцией нервов. От рецепторов они проводят возбуждение к центральной нервной системе, а от нее - к рабочим органам.

С физической точки зрения нерв очень плохой проводник. Его сопротивление в 100 млн. раз больше, чем у медной проволоки того же диаметра, однако нерв отлично выполняет свою функцию, проводя импульсы без затухания на большое расстояние.

Как осуществляется проведение нервного импульса?

Согласно мембранной теории, каждый возбужденный участок приобретает отрицательный заряд, а так как соседний невозбужденный участок имеет положительный заряд, то два участка оказываются противоположно заряженными. При создавшихся условиях между ними потечет электрический ток. Этот местный ток является раздражителем для покоящегося участка, он вызывает его возбуждение и изменяет заряд на отрицательный. Как только это произойдет, между вновь возбужденным и соседним покоящимся участками потечет электрический ток и все повторится.

Так распространяется возбуждение в тонких, безмиелиновых нервных волокнах. Там, где есть миелиновая оболочка, возбуждение может возникать только в узлах нервного волокна (перехватах Ранвье), т. е. в точках, где волокно оголено. Поэтому в миелиновых волокнах возбуждение распространяется скачками от одного перехвата к другому и движется гораздо быстрее, чем в тонких безмиелиновых волокнах (рис. 16).


Рис. 16. Проведение возбуждения в миелиновом нервном волокне. Стрелками показано направление тока, возникающего между возбужденным (А) и соседним покоящимся (Б) перехватами

Следовательно, в каждом участке волокна возбуждение генерируется заново и распространяется не электрический ток, а возбуждение. Этим объясняется способность нерва проводить импульс без затухания (без декремента). Нервный импульс остается постоянным по величине в начале и в конце своего пути и распространяется с постоянной скоростью. Кроме того, все импульсы, которые проходят по нерву, совершенно одинаковы по величине и не отражают качества раздражения. Меняться может только их частота, которая зависит от силы раздражителя.

Величина и длительность импульса возбуждения определяются свойствами нервного волокна, по которому оно распространяется.

Скорость проведения импульса зависит от диаметра волокна: чем оно толще, тем быстрее распространяется возбуждение. Наибольшей скоростью проведения (до 120 м/с) отличаются миелиновые двигательные и чувствительные волокна, управляющие функцией скелетных мышц, поддерживающих равновесие тела и выполняющие быстрые рефлекторные движения. Наиболее медленно (0,5 - 15 м/с) проводят импульсы безмиелиновые волокна, иннервирующие внутренние органы, и некоторые тонкие чувствительные волокна.

Законы проведения возбуждения по нерву

Доказательством того, что проведение по нерву - процесс физиологический, а не физический, служит опыт с перевязкой нерва. Если нерв туго перетянуть лигатурой, то проведение возбуждения прекращается - закон физиологической целостности.

8 ..

Нервная ткань является основной тканью нервной системы и главные ее свойства – возбудимость и проводимость.

Нервная ткань состоит, в основном, из клеток. Ее клетки разделяют на 2 группы:

    нервные клетки (нейроны) – обеспечивают функции проведения и возбуждения;

    клетки нейроглии – обеспечивают вспомогательные функции (трофику, защиту и т.д.)

2. Эмбриогенез нервной ткани .

Эмбриональным источником ткани служит нейральный зачаток эктодермы, который образует нервную трубку. В составе трубки выделяют 3 слоя: внутренний (содержит камбиальные клетки и дает начало эпендимной глии); мантийный (плащевой) слой (сюда мигрируют клетки внутреннего слоя и дифференцируются в нейробласты и далее в нейроны и спонгиобласты, из которых образуется большинство клеток нейроглии; краевая вуаль (содержит отростки нижележащих клеток).

3. Морфо-функциональная характеристика нейрона.

Морфологический облик нейрона соответствует его функциям возбуждению и проведению нервного импульса, что обеспечивается механизмом деполяризации клеточных мембран. В основе этого явления лежит изменение разности потенциалов на внутренней и внешней поверхности мембран благодаря локальным токам Na + в цитоплазму иK + наружу через ионные каналы.

Клетка имеет тело или перикарион с крупным центрально расположенным ядром и отростки: дендриты (их может быть несколько и они проводят возбуждение к телу нейрона, получая его через многочисленные контакты с другими нейронами. В этих участках образуются особые выпячивания – дендритные шипики) и 1 аксон (проводит возбуждение от тела к следующему нейрону или рабочему органу). Есть все органеллы общего значения (даже клеточный центр). И есть специфические структуры. Базофильное вещество, скопления которого видны в перикарионе и в дендритах, но отсутствуют в аксоне. Это плотные скопления гранулярной ЭПС. А также нейрофибриллы, элементы цитоскелета, состоящие из промежуточных нейрофиламентов и микротрубочек. Они способствуют транспорту веществ внутри нейрона, что особенно актуально для отростков.

4. Синапсы и их классификация.

Для нейронов характерен особый вид межклеточных контактов – синапс. Наиболее характерен химический синапс между окончанием аксона и началом дендрита следующей клетки. Он состоит из: 1. пресинаптической части (аксона) 2. синаптической щели 3. постсинаптической мембраны (дендрита). Концевое расширение аксона содержит синаптические пузырьки с особым веществом – нейромедиатором, которое вырабатывается в теле нейрона и быстро транспортируется в аксонное расширение. Возбуждение первого нейрона приводит к быстрому поступлению кальция через персинаптическую щель в аксон, что инициирует экзоцитоза нейромедиатора в синаптическую щель. Постсинаптическая мембрана содержит рецепторы, связывающиеся с медиатором, что и вызывает ее деполяризацию и формирование нервного импульса, либо гиперполяризацию, обуславливая торможение. Возбуждающий медиатор – ацетилхолин, тормозной – глицин. Обратите внимание химические синапсы способны только к одностороннему проведению импульса.

В зависимости от положения синапсы могут быть аксо-дендритические, аксо-соматические и аксо-аксональные (тормозные).

5. Классификации нейронов .

Нейроны классифицируются морфологически: по числу отростков.

    Биохимически: по выделяемому медиатору (например, холинэргические)

    Функционально: чувствительные, двигательные, ассоциативные.

Эта классификация зависит от того, какое окончание имеет аксон либо дендрит данного нейрона, которое называется нервное окончание.

У чувствительных нейронов дендриты заканчиваются рецепторными нервными окончаниями, специализированными на восприятии внешних (экстерорецепторы) или внутренних раздражений (интерорецепторы).

6. Чувствительные нервные окончания.

Чувствительные нервные окончания подразделяются на: свободные и несвободные. Свободные – это просто ветвления дендрита в эпителии или соединительной ткани. Они воспринимают температуре, механические и болевые сигналы.

Несвободные окончания бывают неинкапсулированные и инкапсулированные. Первые представляют собой ветвления дендритов, окруженные особыми клетками нейроглии. Встречаются в дерме и слизистых оболочках. Несвободные инкапсулированные окончания снаружи покрыты еще и соединительно-тканной капсулой. К ним относится ряд механорецепторов, воспринимающих давление и вибрацию (пластинчатые тельца Фатер-Пачини, осязательные тельца Мейснера, тельца Руффини и т.п.), а также нервно-мышечные веретена – это рецепторы, которые располагаются внутри скелетных мышц и оценивают степень растяжения мышечных волокон. Веретена содержат интрафузальные волокна двух типов: волокна с ядерной сумкой и волокна с ядерной цепочкой. Чувствительные окончания дендритов образуют кольцеспиральные и гроздьевидные окончания на этих волокнах и реагируют на изменение их толщины. На этих волокнах есть и двигательные окончания аксонов, которые заставляют их сокращаться в момент сокращения всей мышцы.

7. Эфферентные нервные окончания.

Аксоны двигательных нейронов образуют эффекторные нервные окончания двух типов: секреторные (на клетках желез) и двигательные (в поперечно-полосатых и гладких мышцах). В скелетных мышцах это нейро-мышечный синапс или моторная бляшка. По строению как известный вам синапс, но постсинаптическая мембрана представлена участком плазмолеммы мышечного волокна. Один аксон, разветвляясь на конце, образует моторные бляшки сразу на целой группе мышечных волокон. В сердечной и гладкой мышечной тканях веточки аксонов образуют расширения – варикозы, в которых и находятся пузырьки с нейромедиатором. Как правило здесь иннервируются только некоторые клетки, а от них возбуждение передается на соседние с помощью нексусов.

Секреторные нервные окончания оканчиваются варикозными расширениями вблизи секреторных клеток и стимулируют синтез секретов либо процесс экзоцитоза.

8. Нейроглия.

Нейроглия – это группа вспомогательных клеток, которые обеспечивают деятельность нейронов. В ткани головного мозга их число в 5-10 раз больше, чем нейронов.

Выделяют микроглию и макроглию. Микроглия – это мелкие звездчатые клетки, которые образуются из моноцитов и являются специализированными макрофагами ЦНС. Они выполняют защитную, в том числе и антигенпредставляющую функцию. Выяснена ведущая роль этих клеток в поражении нервной системы при СПИДе. Они разносят вирус, а также инициируют усиленный апоптоз нейронов.

9. Характеристика и классификация макроглии.

Макроглия включает разные клетки, относящиеся к трем разновидностям: астроглия, олигодендроглия и эпендимная глия. Клетки эпендимной глии (эпендимоциты) Эпендимоциты.

Образуют выстилку полостей желудочков головного мозга и центрального канала спинного мозга. Они образуют пласт, соединенный межклеточными контактами и лежащий на базальной мембране, поэтому их одновременно относят и к эпителиям. Они разделяют нейроны и спинномозговую жидкость, образуя нейро-ликворный барьер (высокопроницаемый). А в области сосудистых сплетений входят в состав гемато-ликворного барьера (между кровью и спинномозговой жидкостью). Этот барьер включает: эндотелий сосудов, рвст, которая окружает сосуды, базальную мембрану эпендимоцитов и слой эпендимных клеток.

Олигодендроглия – разнообразные мелкие клетки с короткими и малочисленными отростками, которые окружают нейроны. В нервных узлах они охватывают тела нейронов, обеспечивая барьерную функцию. Другая группа образует оболочки вдоль отростков нейронов, вместе с ними формируя нервные волокна. В периферической н.с. их называют леммоциты или шванновские клетки, в ЦНС – олигодендроциты.

Астроглия представлена астроцитами – звездчатые клетки, похожие на нейроны. Протоплазматические астроциты характерны для серого вещества ЦНС имеют короткие толстые отростки, волокнистые - для белого вещества и имеют длинные отростки. Их функции – опорная (заполняют пространства между нейронами), метаболическая и регуляторная (поддерживают постоянным состав ионов и медиаторов), барьерная (входят в состав гемато-энцефалического барьера, который надежно изолирует нейроны от крови, не допуская иммунного конфликта). ГЭБ включает эндотелий капилляров и их базальную мембрану, и плотный футляр из отростков астроцитов, который покрывает сосуды.

10. Безмиелиновые и миелиновые нервные волокна . Образование и особенности строения.

Нервные волокна – отростки нейронов (их называют осевыми цилиндрами), которые покрыты оболочкой из глиальных клеток. Различают миелиновые и безмиелиновые нервные волокна.

Безмиелиновые волокна образуются при погружении осевого цилиндра в углубления леммоцитов, которые лежат цепочкой вдоль всего аксона. Леммоциты прогибаются настолько, что их мембраны соприкасаются над осевым цилиндром. Эта дубликатура называется мезаксон. Если в цепочку леммоцитов погружается сразу несколько аксонов, такое волокно называют кабельным.

Миелиновые нервные волокна. Образуются с участием шванновских клеток, которые сначала формируют над осевым цилиндром мезаксон, а затем начинают многократно закручиваться. Цитоплазма вместе с ядром оттесняется наружу, образуя слой, который называют нейролеммой. Под ней лежит толстый слой тесно прилежащих сдвоенных мембран, который называют миелином. В определенных участках между витками остаются небольшие прослойки – миелиновые насечки. Поскольку шванновские клетки. Аксон длинный и шванновских клеток вдоль него много. На границах двух соседних клеток миелиновая оболочка исчезает. Эти участки называют узловые перехваты Ранвье.

В ЦНС миелиновая оболочка образуется несколько по-иному.

Миелиновые волокна проводят нервный импульс в десятки раз быстрее, чем безмиелиновые.

Ежедневные переживания, реакция на окружающий нас мир, предметы и явления, фильтр поступающей извне информации и попытка прислушаться к сигналам собственного организма происходит благодаря лишь одной из систем организма. Справиться со всем происходящим помогают удивительные клетки, которые эволюционировали, совершенствовались и приспосабливались на протяжении всей жизни человечества. Нервная ткань человека несколько отличается от животных восприятием, анализом и ответной реакцией. Как же работает эта сложная система, и какие функции в себе несет.

Нервная ткань представляет собой главную составляющую ЦНС человека, которая разделяется на два различные отдела: центральный, состоящий из мозговой системы, и периферический — из нервных узлов, нервов, сплетений.

Центральная нервная система подразделяется на два направления: соматическую систему, управление которой происходит осознанно, и вегетативную – которая не имеет контроля сознанием, но несет ответственность за регулирование работы систем жизнеобеспечения организма и органов, желез. Соматическая система передает сигналы в головной мозг, который в свою очередь сигнализирует органам чувств, мышцам, коже, суставам. Изучением этих процессов занимается специальная наука – гистология. Это наука, которая исследует строение и функции живых организмов.

Нервная ткань имеет клеточный состав – нейроны и межклеточное вещество – нейроглии. Помимо этого строение включает в себя рецепторные клетки.

Нейроны представляют собой нервные клетки, которые состоят из нескольких элементов: ядра, окруженных оболочкой цитоплазматических лент и органов клетки, отвечающих за транспорт веществ, деление, движение, синтез. Отростки, которые проводят импульсы к телу, имеющие короткую длину, называются дендриты. Другие отростки, имеющие строение тоньше – аксоны.

Клетки нейроглии занимают свободное пространство между составляющими нервной ткани и обеспечивают их бесперебойное и регулярное питание, синтез и пр. Они сконцентрированы в ЦНС, где количество нейронов превышает в десятки раз.

Классификация нейронов, исходя из количества находящихся в их составе отростков:

  • униполярные (имеющие всего один отросток). У человека данный вид не представлен;
  • псевдоуниполярные (представлены двумя ветвями одного дендрита);
  • биполярные (по одному дендриту и аксону);
  • мультиполярные (множество дендритов и аксон).

Общая характеристика

Нервная ткань является одним из видов тканей организма, которых множество в человеческой оболочке. Этот вид состоит лишь из двух основных компонентов: клеток и межклеточного вещества, занимающего все промежутки. Гистология уверяет, что характеристика определена ее физиологическими особенностями. Свойства нервной ткани в том, чтобы воспринимать раздражение, возбуждение, вырабатывать и передавать импульсы и сигналы к мозгу.

Источник развития – нейроэктодерма, представленная в виде дорзального утолщения эктодермы, которая называется нервной пластиной.

Свойства

В человеческом организме свойства нервной ткани представлены следующим образом:

  1. Возбудимость. Это свойство обуславливает ее способность, клетки и целой системы организма иметь ответную реакцию на провоцирующие факторы, раздражители и множественные воздействия различных сред организма.

Данное свойство может проявляется в двух процессах: первый — возбуждение, второй — торможение.

Первый процесс представляет собой отклик на действие раздражителя, которое демонстрируется в виде изменений процессов обмена веществ в клетках ткани.

Изменение метаболических процессов в нейронах сопровождается прохождением через плазматическую мембрану из белков и липидов по-разному заряженных ионов, которые меняют подвижность клетки.

В состоянии покоя существует значительная разница между характеристиками поля, выражающими напряженность, верхнего слоя нейрона и внутренней части, которая составляет приблизительно 60 мВ.

Такая разница появляется вследствие различной плотности ионов во внутренней среде клетки и за ее пределами.

Возбуждение способно на миграцию и может свободно перемещаться от клетки к клетке и внутри нее.

Второй процесс представлен в виде отклика на раздражитель, который противопоставляется возбуждению. Этот процесс прекращает, ослабляет или препятствует любой деятельности в нервных тканях и ее клетках.

Одни центры сопровождаются возбуждением, другие – торможением. Так обеспечивается гармоничное и согласованное взаимодействие систем жизнеобеспечения. И один, и другой процессы – это выражение единого нервного процесса, который происходит в одном нейроне, сменяясь. Изменения проходят в результате метаболических процессов, траты энергии, поэтому возбуждение и торможение – два процесса активного состояния нейрона.

  1. Проводимость. Данное свойство обусловлено способностью проводить импульсы. Сам процесс проводимости по нейронам представлен так: в одной из клеток появляется импульс, который может передвигаться в клетки по соседству, перемещаться в любой участок нервной системы. Появляясь в другом месте, меняется плотность ионов на смежном участке.
  2. Раздражимость. В ходе этого процесса ткани перетекают из покоя в абсолютно противоположное состояние – активность. Происходит это под действием провоцирующих факторов, поступающих из внешней среды и от внутренних раздражителей. К примеру, рецепторы глаз раздражаются от яркого света, слуховые рецепторы – от громкого звука, кожа – от прикосновения.

Если проводимость или возбудимость нарушиться, человек потеряет сознание и все процессы психики, происходящие в организме, прекратят свою работу. Чтобы понять, как это происходит, достаточно представить состояние организма во время наркоза. Именно в этот момент человек находится без сознания и его нервные импульсы не посылают никаких сигналов, они отсутствуют.

Функции

Основные функции нервной ткани:

  1. Строительная. Благодаря своему строению нервная ткань участвует в формировании мозга, ЦНС, в частности волокон, узлов, отростков и соединяющих их элементах. Она способна образовать целую систему, и обеспечить ее гармоничное функционирование.
  2. Обработка информации. С помощью нейронов клеток наш организм воспринимает информацию, поступающую извне, обрабатывает ее, проводит анализ и далее трансформирует ее в конкретные импульсы, которые передаются мозгу и ЦНС. Гистология изучает именно способности нервной ткани вырабатывать сигналы, поступающие в мозг.
  3. Регулирование взаимодействия систем. Происходит адаптация к различным обстоятельствам и условиям. Она способна сплотить все системы обеспечения жизнедеятельности организма, грамотно управляя ими и регулируя их работу.