Open
Close

Основные виды механического движения. Основные понятия кинематики и кинематические характеристики Равнозамедленное движение тела

В 7 классе вы изучали механическое движение тел, происходящее с постоянной скоростью, т. е. равномерное движение.

Теперь мы переходим к рассмотрению неравномерного движения. Из всех видов неравномерного движения мы будем изучать самое простое - прямолинейное равноускоренное, при котором тело движется вдоль прямой линии, а проекция вектора скорости тела за любые равные промежутки времени меняется одинаково (при этом модуль вектора скорости может как увеличиваться, так и уменьшаться).

Например, если скорость движущегося по взлётной полосе самолёта за любые 10 с увеличивается на 15 м/с, за любые 5 с - на 7,5 м/с, в каждую секунду - на 1,5 м/с и т. д., то самолёт движется равноускоренно.

В данном случае под скоростью движения самолёта подразумевается его так называемая мгновенная скорость, т. е. скорость в каждой конкретной точке траектории в соответствующий момент времени (более строгое определение мгновенной скорости будет дано в курсе физики старших классов).

Мгновенная скорость тел, движущихся равноускоренно, может меняться по-разному: в одних случаях быстрее, в других - медленнее. Например, скорость обычного пассажирского лифта средней мощности за каждую секунду разгона увеличивается на 0,4 м/с, а скоростного - на 1,2 м/с. В таких случаях говорят, что тела движутся с разным ускорением.

Рассмотрим, какая физическая величина называется ускорением.

Пусть скорость некоторого тела, движущегося равноускоренно, за промежуток времени t изменилась от v 0 до v. Под v 0 подразумевается начальная скорость тела, т. е. скорость в момент t 0 = О, принятый за начало отсчёта времени. А v - это скорость, которую тело имело к концу промежутка времени t, отсчитываемого от t 0 = 0. Тогда за каждую единицу времени скорость менялась на величину, равную

Это отношение обозначается символом а и называется ускорением:

  • Ускорением тела при прямолинейном равноускоренном движении называется векторная физическая величина, равная отношению изменения скорости к промежутку времени, за который это изменение произошло

Равноускоренное движение - это движение с постоянным ускорением.

Ускорение - векторная величина, которая характеризуется не только модулем, но и направлением.

Модуль вектора ускорения показывает, на сколько меняется модуль вектора скорости в каждую единицу времени. Чем больше ускорение, тем быстрее меняется скорость тела.

За единицу ускорения в СИ принимается ускорение такого равноускоренного движения, при котором за 1 с скорость тела изменяется на 1 м/с:

Таким образом, в СИ единицей ускорения является метр на секунду в квадрате (м/с 2).

Применяются и другие единицы ускорения, например 1 см/с 2 .

Вычислить ускорение тела, движущегося прямолинейно и равноускоренно, можно с помощью следующего уравнения, в которое входят проекции векторов ускорения и скорости:

Покажем на конкретных примерах, как находится ускорение. На рисунке 8, а изображены санки, которые равноускоренно скатываются с горы.

Рис. 8. Равноускоренное движение санок, скатывающихся с горы (АВ) и продолжающих движение по равнине (CD)

Известно, что участок пути АВ санки прошли за 4 с. При этом в точке А они имели скорость, равную 0,4 м/с, а в точке В - скорость, равную 2 м/с (санки приняты за материальную точку).

Определим, с каким ускорением двигались санки на участке АВ.

В данном случае за начало отсчёта времени следует принять момент прохождения санками точки А, поскольку согласно условию именно от этого момента отсчитывается промежуток времени, за который модуль вектора скорости изменился от 0,4 до 2 м/с.

Теперь проведём ось X, параллельную вектору скорости движения санок и направленную в ту же сторону. Спроецируем на неё начала и концы векторов v 0 и v. Образовавшиеся при этом отрезки v 0x и v x являются проекциями векторов v 0 и v на ось X. Обе эти проекции положительны и равны модулям соответствующих векторов: v 0x = 0,4 м/с, v x = 2 м/с.

Запишем условие задачи и решим её.

Проекция вектора ускорения на ось X получилась положительной, значит, вектор ускорения сонаправлен с осью X и со скоростью движения санок.

Если векторы скорости и ускорения направлены в одну сторону, то скорость растёт.

Теперь рассмотрим другой пример, в котором санки, скатившись с горы, движутся по горизонтальному участку CD (рис. 8, б).

В результате действия на санки силы трения их скорость непрерывно уменьшается, и в точке D санки останавливаются, т. е. их скорость равна нулю. Известно, что в точке С санки имели скорость 1,2 м/с, а участок CD был пройден ими за 6 с.

Рассчитаем ускорение санок в этом случае, т. е. определим, на сколько менялась скорость санок за каждую единицу времени.

Проведём ось X параллельно отрезку CD и сонаправим её со скоростью движения санок, как показано на рисунке. При этом проекция вектора скорости санок на ось X в любой момент их движения будет положительна и равна модулю вектора скорости. В частности, при t 0 = 0 v 0x = 1,2 м/с, а при t = 6 с v x = 0.

Запишем данные и вычислим ускорение.

Проекция ускорения на ось X отрицательна. Это значит, что вектор ускорения а направлен противоположно оси X и соответственно противоположно скорости движения. При этом скорость санок уменьшалась.

Таким образом, если векторы скорости и ускорения движущегося тела направлены в одну сторону, то модуль вектора скорости тела увеличивается, а если в противоположные - уменьшается.

Вопросы

  1. К какому виду движения - равномерному или неравномерному - относится прямолинейное равноускоренное движение?
  2. Что понимают под мгновенной скоростью неравномерного движения?
  3. Дайте определение ускорения равноускоренного движения. Какова единица ускорения?
  4. Что такое равноускоренное движение?
  5. Что показывает модуль вектора ускорения?
  6. При каком условии модуль вектора скорости движущегося тела увеличивается; уменьшается?

Упражнение 5

Криволинейное движение тела

Криволинейное движение тела определение:

Криволинейное движение - это вид механического движения, при котором направление скорости изменяется. Модуль скорости может меняться.

Равномерное движение тела

Равномерное движение тела определение:

Если тело за равные промежутки времени проходит равные расстояния, то такое движение называется . При равномерном движении модуль скорости есть постоянная величина. А может меняться.

Неравномерное движение тела

Неравномерное движение тела определение:

Если тело за равные промежутки времени проходит различные расстояния, то такое движение называется неравномерным. При неравномерном движении модуль скорости есть переменная величина. Направление скорости может меняться.

Равнопеременное движение тела

Равнопеременное движение тела определение:

Есть величина постоянная при равнопеременном движении. Если при этом направление скорости не меняется, то получим прямолинейное равнопеременное движение.

Равноускоренное движение тела

Равноускоренное движение тела определение:

Равнозамедленное движение тела

Равнозамедленное движение тела определение:

Когда мы говорим о механическом движении тела, то можно рассмотреть понятие поступательного движения тела.

Движение человека является механическим, то есть это изменение тела или его частей относительно других тел. Относительное перемещение описывает кинематика.

Кинематика раздел механики, в котором изучается механическое движение, но не рассматриваются причины, вызывающие это движение . Описание движения как тела человека (его частей) в различных видах спорта , так и различных спортивных снарядов являются неотъемлемой частью спортивной биомеханики и в частности кинематики.

Какой бы материальный объект или явление мы не рассматривали, окажется что вне пространства и вне времени ничего не существует. Любой предмет имеет пространственные размеры и форму, находится в каком-то месте пространства по отношению к другому предмету. Любой процесс, в котором участвуют материальные объекты, имеет во времени начало и конец, сколько то длится во времени, может совершаться раньше или позже другого процесса. Именно по этому возникает необходимость измерять пространственную и временную протяжённости.

Основные единицы измерения кинематических характеристик в международной системе измерений СИ.

Пространство. Одна сорокамиллионная часть длины земного меридиана, проходящего через Париж, была названа метром. Поэтому длина измеряется в метрах (м) и кратных ему единицах измерения: километрах (км), сантиметрах (см) и т. д.

Время – одно из фундаментальных понятий. Можно сказать, что это то, что отделяет два последовательных события. Один из способов измерить время – это использовать любой регулярно повторяющийся процесс. Одна восьмидесяти шести тысячная часть земных суток была выбрана за единицу времени и была названа секундой (с) и кратных ей единицах (минутах, часах и т. д.).

В спорте используются специальные временные характеристики:

Момент времени (t) - это временная мера положения материальной точки , звеньев тела или системы тел . Моментами времени обозначают начало и окончание движения или какой либо его части или фазы.

Длительность движения (∆t) – это его временная мера, которая измеряется разностью моментов окончания и начала движения ∆t = tкон. – tнач.

Темп движения (N) – это временная мера повторности движений, повторяющихся в единицу времени . N = 1/∆t; (1/c) или (цикл/c).

Ритм движений это временная мера соотношения частей (фаз) движений . Он определяется по соотношению длительности частей движения.

Положение тела в пространстве определяют относительно некоторой системы отсчёта, которая включает в себя тело отсчёта (то есть относительно чего рассматривается движение) и систему координат, необходимую для описания на качественном уровне положение тела в той или иной части пространства.

С телом отсчёта связывают начало и направление измерения. Например, в целом ряде соревнований началом координат можно выбрать положение старта. От него уже рассчитывают различные соревновательные дистанции во всех циклических видах спорта. Тем самым в выбранной системе координат «старт – финиш» определяют расстояние в пространстве, на которое переместится спортсмен при движении. Любое промежуточное положение тела спортсмена во время движения характеризуется текущей координатой внутри выбранного дистанционного интервала.

Для точного определения спортивного результата правилами соревнований предусматривается по какой точке (пункт отсчёта) ведётся отсчёт: по носку конька конькобежца, по выступающей точке грудной клетки бегуна-спринтера, или по заднему краю следа приземляющегося прыгуна в длину.

В некоторых случаях для точного описания движения законов биомеханики вводится понятие материальная точка.

Материальная точка это тело, размерами и внутренней структурой которого в данных условиях можно пренебречь .

Движение тел по характеру и интенсивности могут быть различными. Чтобы охарактеризовать эти различия, в кинематике вводят ряд терминов, представленных ниже.

Траектория линия, описываемая в пространстве движущейся точкой тела . При биомеханическом анализе движений прежде всего рассматривают траектории движений характерных точек человека. Как правило, такими точками являются суставы тела. По виду траектории движений делят на прямолинейные (прямая линия) и криволинейные (любая линия, отличная от прямой).

Перемещение это векторная разность конечного и начального положения тела . Следовательно, перемещение характеризует окончательный результат движения.

Путь это длина участка траектории, пройденной телом или точкой тела за выбранный промежуток времени .

Для того, чтобы охарактеризовать насколько быстро изменяется в пространстве положение движущегося тела, используют специальное понятие скорость.

Скорость это отношение пройденного пути ко времени, за который он пройден. Она показывает, как быстро изменяется положение тела в пространстве . Поскольку скорость – это вектор , то она также указывает, в каком направлении движется тело или точка тела.

Средней скоростью тела на данном участке траектории называется отношение пройденного пути ко времени движения, м/с:

Если на всех участках траектории средняя скорость одинакова, то движение называется равномерным.

Вопрос о скорости бега является важным в спортивной биомеханике. Известно, что скорость бега на определённую дистанцию зависит от величины этой дистанции. Бегун может поддерживать максимальную скорость только в течение ограниченного времени (3-4) секунды, высококвалифицированные спринтеры до 5 - 6 секунд). Средняя скорость стайеров гораздо ниже, чем спринтеров. Ниже показана зависимость средней скорости (V) от длины дистанции (S).

Мировые спортивные рекорды и показанная в них средняя скорость

Вид состязаний и дистанция Мужчины Женщины
Средняя скорость м/с Время, показанное на дистанции Средняя скорость м/с
Бег
100 м 9,83 с 10,16 10,49 с 9,53
400 м 43,29 с 9,24 47,60 с 8,40
1500 м 3 мин 29,46 с 7,16 3 мин 52,47 с 6,46
5000 м 12 мин 58,39 с 6,42 14 мин 37,33 с 5,70
10000 м 27 мин 13,81 с 6,12 30 мин 13,75 с 5,51
Марафон (42 км 195 м) 2 ч 6 мин 50 с 5,5 2 ч 21 мин 0,6 с 5,0
Бег на коньках
500 м 36,45 с 13,72 39,10 с 12,78
1500 м 1 мин 52,06 с 13,39 1 мин 59,30 с 12,57
5000 м 6 мин 43,59 с 12,38 7 мин 14,13 с 11,35
10000 м 13 мин 48,20 с 12,07
100 м (вольный стиль) 48,74 с 2,05 54,79 с 1,83
200 м (в/с) 1 мин 47,25 с 1,86 1 мин 57,79 с 1,70
400 м (в/с) 3 мин 46,95 с 1,76 4 мин 3,85 с 1,64

Для удобства проведения вычислений среднюю скорость можно записать и через изменение координат тела. При прямолинейном движении пройденный путь равен разности координат конечной и начальной точек. Так, если в момент времени t0 тело находилось в точке с координатой Х0, а в момент времени t1 – в точке с координатой Х1, то пройденный путь ∆Х = Х1 – Х0, а время движения ∆t = t1 – t0 (символ ∆ обозначает разность однотипных величин или для обозначения очень маленьких интервалов). В этом случае:

Размерность скорости в СИ – м/с. При преодолении больших расстояний скорость определяют в км/час. При необходимости такие значения можно перевести в СИ. Например, 54 км/час = 54000 м /3600 с = 15 м/с.

Средние скорости на различных участках пути значительно отличаются даже при относительно равномерном прохождении дистанции: стартовый разгон, преодоление дистанции с внутрицикловыми колебаниями скорости (во время отталкивания скорость увеличивается, во время свободного скольжения в беге на коньках или фазы полёта в л/а беге – уменьшается), финиширование. По мере уменьшения интервала, по которому вычисляется скорость можно определить скорость в данной точке траектории, которая называется мгновенной скоростью.

Или скоростью в данной точке траектории называется предел, к которому стремится перемещение тела в окрестности этой точки ко времени при неограниченном уменьшении интервала:

Мгновенная скорость – величина векторная.

Если величина скорости (или модуль вектора скорости) не меняется, движение равномерное, при изменении модуля скорости – неравномерное.

Равномерным называют движение, при котором за любые равные промежутки времени тело проходит одинаковые пути . В этом случае величина скорости остаётся неизменной (по направлению скорость может изменяться, если движение криволинейное).

Прямолинейным называют движение, при котором траектория является прямой линией . В этом случае направление скорости остаётся неизменным, (величина скорости может изменяться, если движение не равномерное).

Равномерным прямолинейным называют движение, которое является и равномерным и прямолинейным. В этом случае неизменными остаются и величина и направление.

В общем случае при движении тела изменяются и величина и направление вектора скорости. Для того, чтобы охарактеризовать насколько быстро происходят эти изменения, используют специальную величину – ускорение.

Ускорение это величина, равная отношению изменения скорости движения тела к длительности промежутка времени, за которое это изменение скорости произошло . Среднее ускорение на основе этого определения равно, м/с²:

Мгновенным ускорением называется физическая величина, равная пределу, к которому стремится среднее ускорение за промежуток ∆t → 0, м/с²:

Поскольку вдоль траектории скорость может изменяться как по величине так и по направлению, вектор ускорения имеет две составляющие.

Составляющая вектора ускорения а, направленная вдоль касательной к траектории в данной точке, называется тангенциальным ускорением, которое характеризует изменение вектора скорости по величине.

Составляющая вектора ускорения а, направленная по нормали к касательной в данной точке траектории, называется нормальным ускорением. Оно характеризует изменение вектора скорости по направлению в случае криволинейного движения. Естественно, что когда тело движется по траектории, являющейся прямой линией, нормальное ускорение равно нулю.

Прямолинейное движение называется равнопеременным, если за любые промежутки времени скорость тела изменяется на одну и ту же величину. В этом случае отношение

∆V/ ∆t одинаково для любых интервалов времени. Поэтому величина и направление ускорения остаются неизменными: а = const.

Для прямолинейного движения вектор ускорения направлен по линии движения. Если направление ускорения совпадает с направлением вектора скорости, то величина скорости будет возрастать. В этом случае движение называют равноускоренным. Если направление ускорения противоположно направлению вектора скорости, то величина скорости будет уменьшаться. В этом случае движение называют равнозамедленным. В природе существует естественное равноускоренное движение – это свободное падение.

Свободным падением – называется падение тела, если на него действует единственная сила – сила тяжести . Опыты, проведённые Галилеем, показали, что при свободном падении все тела движутся с одинаковым ускорением свободного падения и обозначаются буквой ĝ. Вблизи поверхности Земли ĝ = 9,8 м/с². Ускорение свободного падения обусловлено притяжением со стороны Земли и направлено вертикально вниз. Строго говоря, такое движение возможно лишь в вакууме. Падение в воздухе можно считать приблизительно свободным.

Траектория движения свободно падающего тела зависит от направления вектора начальной скорости. Если тело брошено вертикально вниз, то траектория – вертикальный отрезок, а движение называется равнопеременным. Если тело брошено вертикально вверх, то траектория состоит из двух вертикальных отрезков. Сначала тело поднимается, двигаясь равнозамедленно. В точке наивысшего подъёма скорость становится равной нулю, после чего тело опускается, двигаясь равноускоренно.

Если вектор начальной скорости направлен под углом к горизонту, то движение происходит по параболе. Так двигаются брошенный мяч, диск, спортсмен, прыгающий в длину, летящая пуля и др.

В зависимости от формы представления кинематических параметров существуют различные виды законов движения.

Закон движения – это одна из форм определения положения тела в пространстве, которая может быть выражена:

Аналитически, то есть с помощью формул. Эта разновидность закона движения задаётся с помощью уравнений движения: x = x(t), y = y(t), z = z(t);

Графически, то есть с помощью графиков изменения координат точки в зависимости от времени;

Таблично, то есть в виде вектора данных, когда в один столбец таблицы заносят числовые отсчёты времени, а в другой в сопоставлении с первым – координаты точки или точек тела.

1. Понятие равноускоренного движения. Его характеристики.

2. Понятие системы отсчета. Примеры разных систем отсчета. Равнозамедленное движение, его характеристики.
3. Понятие материальной точки. Равномерное прямолинейное движение, его характеристики
4. Понятие системы отсчета. Примеры разных систем отсчета. Равноускоренного движение, его характеристики.
5. Понятие материальной точки. Описание законов движения тела по параболе.
6. Описание движения тела по окружности. Его характеристики.
7. Понятие равноускоренного движения. Его характеристики.
8. Описание движения тела в плоскости под углом к горизонту. Его характеристики.
9. Первый закон Ньютона, применение его в жизни и природные явления.
10. Второй закон Ньютона. Применение его для расчета ускорения.
11. Третий закон Ньютона. Виды сил. Графическое изображение сил приложенных к телу.
12. Статика. Условие статического равновесия, на примерах.
13. Закон сохранения импульса на примерах.
14. Понятие энергии, классификация. Кинетическая энергия.
15. Понятие энергии, классификация. Потенциальная энергия растяжения пружины.
16. Понятие энергии, классификация. Потенциальная энергия силы тяжести.
17. Понятие полной механической энергии. Закон сохранения энергии.
18. МКТ – постулаты. Характеристики трех состояний вещества.
19. Газ – движение молекул. Опыт Штерна, распределение молекул по скоростям.
20. Понятие идеального газа. Уравнение Клайперона-Менделеева. Изопроцессы – изобара.
21. Уравнение идеального газа, условия выполнения. Изопроцессы – изотерма.
22. Понятие идеального газа. Уравнение Клайперона-Менделеева. Изопроцессы – изохора.
23. МКТ. Понятие реального газа, сравнение его с идеальным.
24. Первое начало термодинамики, понятие теплообмена.
25. Первое начало термодинамики для изохорического процесса.
26.Первое начало термодинамики для изобарического процесса.
27.Первое начало термодинамики для изотермического процесса.
28. Понятие внутренней энергии идеального газа для изопроцессов.
29. Второе начало термодинамики. Применение его циклическим процессам на примере паровой машины.
30. Второе начало термодинамики. Применение его циклическим процессам на примере двигателя внутреннего сгорания.
31.Понятие тепловых двигателей. Реактивные двигатели.
32.Понятие тепловых двигателей. Холодильные машины.
33.Третье начало термодинамики.
34.Адиобатный процесс. Понятие теплоемкости.

Ребята, помогите пожалуйста с задачками по физике 8.14 При какой частоте колебаний радиопередатчик излучает электромагнитые волны

длиной 49 м? К каким волнам (длинным, средним или коротким) относятся Эти волны?

Механическим движением тела (точки) называется изменение его положения в пространстве относительно других тел с течением времени.

Виды движений:

А) Равномерное прямолинейное движение материальной точки: Начальные условия


. Начальные условия



Г) Гармоническое колебательное движение. Важным случаем механического движения являются колебания, при которых параметры движения точки (координаты, скорость, ускорение) повторяются через определенные промежутки времени.

О писания движения . Существуют различные способы описания движения тел. При координатном способе задания положения тела в декартовой системе координат движение материальной точки определяется тремя функциями, выражающими зависимость координат от времени:

x = x (t ), y =у(t ) и z = z (t ) .

Эта зависимость координат от времени называется законом движения (или уравнением движения).

При векторном способе положение точки в пространстве определяется в любой момент времени радиус-вектором r = r (t ) , проведенным из начала координат до точки.

Существует еще один способ определения положения материальной точки в пространстве при заданной траектории ее движения: с помощью криволинейной координаты l (t ) .

Все три способа описания движения материальной точки эквивалентны, выбор любого из них определяется соображениями простоты получаемых уравнений движения и наглядности описания.

Под системой отсчета понимают тело отсчета, которое условно считается неподвижным, систему координат, связанную с телом отсчета, и часы, также связанные с телом отсчета. В кинематике система отсчета выбирается в соответствии с конкретными условиями задачи описания движения тела.

2. Траектория движения. Пройденный путь. Кинематический закон движения.

Линия, по которой движется некоторая точка тела, называется траекторией движения этой точки.

Длина участка траектории, пройденного точкой при ее движении, называется пройденным путем .

Изменение радиус- вектора с течением времени называют кинематическим законом :
При этом координаты точек будут являться координатами по времени:x = x (t ), y = y (t ) и z = z (t ).

При криволинейном движении путь больше модуля перемещения, так как длина дуги всегда больше длины стягивающей её хорды

Вектор, проведенный из начального положения движущейся точки в положение ее в данный момент времени (приращение радиус-вектора точки за рассматриваемый промежуток времени), называется перемещением . Результирующее перемещение равно векторной сумме последовательных перемещений.

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории, и модуль перемещения равен пройденному пути.

3. Скорость. Средняя скорость. Проекции скорости.

Скорость - быстрота изменения координаты. При движении тела (материальной точки) нас интересует не только его положение в выбранной системе отсчета, но и закон движения, т. е. зависимость радиус-вектора от времени. Пусть моменту времени соответствует радиус-вектордвижущейся точки, а близкому моменту времени- радиус-вектор. Тогда за малый промежуток времени
точка совершит малое перемещение, равное

Для характеристики движения тела вводится понятие средней скорости его движения:
Эта величина является векторной, совпадающей по направлению с вектором
. При неограниченном уменьшенииΔt средняя скорость стремится к предельному значению, которое называется мгновенной ско­ростью :

Проекции скорости.

А) Равномерное прямолинейное движение материальной точки:
Начальные условия

Б) Равноускоренное прямолинейное движение материальной точки:
. Начальные условия

В) Движение тела по дуге окружности с постоянной по модулю скоростью: