Open
Close

Что это за исследование? ЯМР для «чайников», или Десять основных фактов о ядерном магнитном резонансе Ядерный магнитный резонанс необычное применение

Сегодня все чаще пациентов направляют не на рентгенографию или УЗИ, а на ядерную магниторезонансную томографию. В основе такого метода исследования лежит магнетизм ядра. Рассмотрим, что такое , какие ее преимущества и в каких случаях она проводится.

Этот метод диагностики основан на ядерном магнитном резонансе. Во внешнем магнитном поле ядро атома водорода, или протон, находится в двух взаимно противоположных состояниях. Изменить направление магнитного момента ядра можно, подействовав на него электромагнитными лучами с некоторой определенной частотой.

Помещение протона во внешнее магнитное поле вызывает изменение его магнитного момента с возвращением в исходное положение. При этом выделяется определенное количество энергии. фиксирует изменение количества такой энергии.

Томограф использует очень сильные магнитные поля. Электромагниты обычно способны развивать магнитное поле напряженностью 3, иногда до 9 Тл. Оно является полностью безвредным для человека. Система томографа позволяет локализировать направленность магнитного поля с тем, чтобы получить наиболее качественные изображения.

Ядерно магнитный томограф

Способ диагностики основывается на фиксации электромагнитного отклика ядра атома (протона), происходящего из-за возбуждения его электромагнитными волнами в высоконапряженном магнитном поле. Впервые о магнитно резонансной томографии заговорили еще в 1973 году. Тогда американский ученый П. Латербур предложил провести исследование объекта в изменяющемся магнитном поле. Работы этого ученого послужили началу новой эры в медицине.

С помощью магнитно резонансного томографа стало возможным изучать ткани и полости организма человека благодаря степени насыщенности тканей водородом. Часто применяются магнито-резонансные контрастные вещества. Чаще всего это препараты гадолиния, которые способны изменять отклик протонов.
Термин «ядерная МР томография» существовал до 1986 года.

В связи с радиобоязнью у населения в связи с катастрофой на Чернобыльской атомной электростанции из названия нового метода диагностики решено было убрать слово «ядерный». Впрочем, это позволило магнито-резонансной томографии быстро войти в практику диагностики многих заболеваний. На сегодня этот метод является ключевым в определении множества еще недавно труднодиагностируемых заболеваний.

Как проводится диагностика?

При проведении МРТ используется очень сильное магнитное поле. И хотя оно не опасно для человека, все же врачу и пациенту нужно придерживаться определенных правил.

Прежде всего, перед процедурой диагностики пациент заполняет специальную анкету. В ней он указывает состояние здоровья, а также ведомости о себе. Обследование делается в специально подготовленном помещении с кабинкой для переодевания и личных вещей.

Чтобы не навредить самому себе, а также для обеспечения правильности результатов пациент должен снять с себя все вещи, которые содержат металл, оставить в шкафчике для личных вещей мобильные телефоны, кредитные карточки, часы и проч . Женщинам желательно смыть с кожи декоративную косметику.
Дале пациента помещают внутрь трубы томографа. По указанию врача определяется зона обследования. Каждая зона обследуется в течение десяти – двадцати минут. Все это время пациент должен находиться неподвижно. От этого будет зависеть качество снимков. Врач может зафиксировать положение пациента, если это необходимо.

Во время работы аппарата слышатся равномерные звуки. Это нормально и свидетельствует о том, что исследование проходит правильно. Для получения более точных результатов пациенту может быть введено внутривенно контрастное вещество. В отдельных случаях при введении такого вещества ощущается прилив тепла. Это совершенно нормально.

Приблизительно через полчаса после исследования врач может получить протокол исследования (заключение). Выдается также диск с результатами.

Преимущества ядерной МРТ

К преимуществам такого обследования относят следующее.

  1. Возможность получить высококачественные изображения тканей организма в трех проекциях. Это значительно повышает визуализацию тканей и органов. В таком случае ЯМРТ намного лучше, чем компьютерная томография, рентгенография и ультразвуковая диагностика.
  2. Высококачественные объемные изображения дают возможность получить точный диагноз, что улучшает лечение и повышает вероятность выздоровления.
  3. Так как на МРТ можно получить высококачественное изображение, то такое исследование – лучшее для обнаружения опухолей, нарушений деятельности центральной нервной системы, патологических состояний опорно-двигательного аппарата. Так появляется возможность диагностировать те заболевания, которые еще недавно было сложно или невозможно обнаружить.
  4. Современные аппараты для томографии позволяют получить качественные снимки без изменения положения пациента. А для кодирования информации применяются те же методы, что и в компьютерной томографии. Это облегчает диагностику, так как врач видит трехмерные изображения целых органов. Также врач может получить изображения того или иного органа послойно.
  5. Такое обследование хорошо определяет самые ранние патологические изменения в органах. Таким образом можно обнаружить болезнь на стадии, когда пациент еще не ощущает симптомов.
  6. При проведении такого исследования больной не подвергается ионизирующему излучению. Это существенно расширяет сферы применения МРТ.
  7. Процедура МРТ полностью безболезненна и не доставляет больному никакого дискомфорта.

Показания к МРТ

Показаний к проведению магнитно резонансной томографии много.

  • Нарушения мозгового кровообращения.
  • Подозрения на новообразование мозга, поражение его оболочек.
  • Оценка состояния органов после оперативного вмешательства.
  • Диагностика воспалительных явлений.
  • Судороги, эпилепсии.
  • Черепно-мозговая травма.
  • Оценка состояния сосудов.
  • Оценка состояния костей и суставов.
  • Диагностика мягких тканей организма.
  • Заболевания позвоночника (в том числе остеохондроз, спондилоартроз).
  • Травмы позвоночника.
  • Оценка состояния спинного мозга, в том числе подозрения на злокачественные процессы.
  • Остеопороз.
  • Оценка состояния органов брюшины, а также забрюшинного пространства. МРТ показано при желтухе, хроническом гепатите, холецистите, желчнокаменной болезни, опухолевидном поражении печени, панкреатите, заболеваниях желудка, кишечника, селезенки, почек.
  • Диагностика кист.
  • Диагностика состояния надпочечников.
  • Заболевания органов малого таза.
  • Урологические патологии.
  • Гинекологические заболевания.
  • Болезни органов грудной полости.

Кроме того, показано магнито-резонансное исследование всего организма при подозрении на новообразование. С помощью МРТ можно проводить поиск метастазов, если диагностирована первичная опухоль.

Это далеко не полный перечень показаний для проведения магнито-резонансной томографии. Можно с уверенностью утверждать, что нет такого организма и заболевания, которое не можно было бы обнаружить при помощи такого способа диагностики. Поскольку же возможности медицины растут, то перед врачами открываются практически безграничные возможности диагностики и лечения многих опасных болезней.

Когда противопоказана магнитно-резонансная томография?

Для МРТ существует ряд абсолютных и относительных противопоказаний. К абсолютным противопоказаниям относятся такие.

  1. Наличие установленного кардиостимулятора. Это связано с тем, что колебания магнитного поля способны подстраиваться под ритм сердца и таким образом могут привести к летальному исходу.
  2. Наличие установленных ферромагнитных или электронных имплантатов в среднем ухе.
  3. Большие имплантаты из металла.
  4. Наличие в организме ферромагнитных осколков.
  5. Наличие аппаратов Илизарова.

К относительным противопоказаниям (когда исследование возможно при выполнении определенных условий) относятся:


При выполнении МРТ с контрастом противопоказаниями является анемия, хроническая декомпенсированная почечная недостаточность, беременность, индивидуальная непереносимость.

Заключение

Значение магнитно-резонансной томографии для диагностики трудно переоценить. Это – совершенный, неизвазивный, безболезненный и безвредный способ обнаружения многих болезней. С внедрением магнитно-резонансной томографии улучшилось и лечение пациентов, так как врач знает точный диагноз и особенности всех процессов, протекающих в организме пациента.

Не нужно бояться проведения МРТ. Пациент не ощущает никаких болевых ощущений во время процедуры. Она ничего не имеет общего с ядерным или рентгеновским излучением. Отказываться от проведения такой процедуры также нельзя.

В этой главе, как и в предыдущей, рассматриваются явления, связанные с излучением и поглощением энергии атомами и молекулами.

Магнитный резонанс - избирательное поглощение электро­магнитных волн веществом, помещенным в магнитное поле.

§ 25.1. Расщепление энергетических уровней атомов в магнитном поле

В § 13.1, 13.2 было показано, что на контур с током, помещен­ный в магнитное поле, действует момент силы. При устойчивом равновесии контура его магнитный момент совпадает с направле­нием вектора магнитной индукции. Такое положение занимает контур с током, предоставленный самому себе. Существенно ина­че ориентируются в магнитном поле магнитные моменты частиц. Рассмотрим этот вопрос с позиции квантовой механики.

В § 23.6 отмечалось, что проекция момента импульса электро­на на некоторое направление принимает дискретные значения. Чтобы обнаружить эти проекции, необходимо каким-то образом выделить направление Z. Один из наиболее распространенных способов - задание магнитного поля, в этом случае определяют проекцию орбитального момента импульса [см. (23.26)], проек­цию спина (23.27), проекцию полного момента импульса электро­на [см. (23.30)] и проекцию момента импульса атома L Az [см. (23.37)] на направление вектора магнитной индукции В.

Связь между моментом импульса и магнитным моментом (13.30) и (13.31) позволяет использовать перечисленные формулы для нахождения дискретных проекций соответствующего магнит­ного момента на направление вектора В. Таким образом, в отли­чие от классических представлений, магнитные моменты частиц ориентируются относительно магнитного поля под некоторыми определенными углами.

Для атома, например, из (23.37) получаем следующие значе­ния проекций магнитного момента р тг на направление вектора магнитной индукции:

где магнетон Бора (см. § 13.1), т - масса электрона, mj - магнитное квантовое число, g - множитель Ланде (g-фактор) (см. § 13.4), для заданного уровня энергии ато­ма он зависит от квантовых чисел L, J, S. Знак «-» в (25.1) обус­ловлен отрицательным зарядом электрона.

Энергия атома в магнитном поле с учетом того, что в отсутст­вие поля энергия атома равна Е о, определяется формулой

Так как магнитное квантовое число mj [см. (23.37)] может прини­мать 2J + 1 значений от +J до -J, то из (25.2) следует, что каждый энергетический уровень при помещении атома в магнитное поле рас­щепляется на 2J +1 подуровней. Это схематически показано на рис. 25.1 для J = 1/2. Разность энергий между соседними

подуровнями равна

Расщепление энергетических уров­ней приводит и к расщеплению спект­ральных линий атомов, помещенных в магнитное поле. Это явление называют эффектом Зеемана.

Запишем выражение (25.2) для двух подуровней E 1 и Е 2 , образованных при наложении магнитного поля:

где Е 01 и Е 02 - энергетические уровни атома в отсутствие магнитного поля. Ис­пользуя (23.31) и (25.4), получаем выра­жение для излучаемых атомом частот:

Частота спектральной линии в отсутствие магнитного поля;

Расщепление спектральной линии в магнитном поле. Из (25.7) видно, что Av зависит от магнитного квантового числа, множите­ля Ланде и магнитной индукции поля. Если g 1 = g 2 = g, то

Согласно правилам отбора для магнитного квантового числа, имеем

Это соответствует трем возможным частотам: n 0 + gm B B/h, n 0 , n 0 - gm B B/h, т. е. в магнитном поле спектральная линия расщеп­ляется и превращается в триплет (рис. 25.2). Такое расщепление называется нормальным или простым эффектом Зеемана. Он наблюдается в сильных магнитных полях или при g 1 = g 2 .

В слабых магнитных полях при g 1 ¹ g 2 существует аномаль­ный эффект Зеемана, и расщепление спектральных линий зна­чительно более сложное.

§ 25.2. Электронный парамагнитный резонанс и его медико-биологические применения

У атома, помещенного в магнитное поле, спонтанные переходы между подуровнями одного и того же уровня маловероятны. Од­нако такие переходы осуществляются индуцированно под влиянием внешнего электромагнитного поля. Необходимым условием является совпадение частоты электромагнитного поля с частотой фотона, соответствующего разности энергий между расщеплен­ными подуровнями. При этом можно наблюдать поглощение энергии электромагнитного поля, которое называют магнитным резонансом.

В зависимости от типа частиц - носителей магнитного момен­та - различают электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР).

ЭПР происходит в веществах, содержащих парамагнитные частицы: молекулы, атомы, ионы, радикалы, обладающие маг­нитным моментом, обусловленным электронами. Возникающее при этом явление Зеемана объясняют расщеплением электронных уровней (отсюда название резонанса - «электронный»). Наибо­лее распространен ЭПР на частицах с чисто спиновым магнитным моментом (в зарубежной литературе такую разновидность ЭПР иногда называют электронным спиновым резонансом).

ЭПР был открыт Е. П. Завойским в 1944 г. В первых опытах на­блюдалось резонансное поглощение в солях ионов группы железа. Завойскому удалось изучить ряд закономерностей этого явления.

Из выражений (23.31) и (25.3) получаем следующее условие резонансного поглощения энергии:

Магнитный резонанс наблюдается, ес­ли на частицу одновременно действу­ют постоянное поле индукции В рез и электромагнитное поле с частотой v. Из условия (25.9) понятно, что обна­ружить резонансное поглощение мож­но двумя путями: либо при неизмен­ной частоте плавно изменять магнит­ную индукцию, либо при неизменной магнитной индукции плавно изме­нять частоту. Технически более удоб­ным оказывается первый вариант.

На рис. 25.3 показаны расщепле­ние энергетического уровня электро­на (а) и изменение мощности Р элек­тромагнитной волны, прошедшей об­разец, в зависимости от индукции магнитного поля (б). При выполнении условия (25.9) возникает ЭПР.

Форма и интенсивность спектральных линий, наблюдаемых в ЭПР, определяются взаимодействием магнитных моментов элек­тронов, в частности спиновых, друг с другом, с решеткой твердо­го тела и т. п. Выясним, как эти факторы влияют на характер спектров.

Предположим, что условие (25.9) выполняется. Для поглоще­ния энергии необходимо, чтобы у атомов вещества была большая населенность нижних подуровней, чем верхних. В противном слу­чае, будет преобладать индуцированное излучение энергии.

При электронном парамагнитном резонансе наряду с поглоще­нием энергии и увеличением населенности верхних подуровней происходит и обратный процесс - безызлучательные переходы на нижние подуровни, энергия частицы передается решетке.

Процесс передачи энергии частиц решетке называют спин-ре­шеточной релаксацией, он характеризуется временем т. По соот­ношению Гейзенберга (23.11) это приводит к уширению уровня.

Таким образом, резонансное поглощение вызывается не точно при одном значении В, а в некотором интервале (рис. 25.4). Вместо бесконечно узкой линии поглощения будет линия конеч­ной ширины: чем меньше время спин-решеточной релаксации, тем больше ширина линии (t 1 < t 2 , соответственно кривые 1 и 2 на рис. 25.4).

Уширение линий ЭПР зависит также от взаимодействия спи­нов электронов (спин-спиновое взаимодействие) и от других взаи­модействий парамагнитных частиц. Разные типы взаимодейст­вия влияют не только на ширину линии поглощения, но и на ее форму.

Поглощенная при ЭПР энергия, т. е. интегральная (суммар­ная) интенсивность линии, при определенных условиях пропор­циональна числу парамагнитных частиц. Отсюда следует, что по измеренной интегральной интенсивности можно судить о кон­центрации этих частиц.

Важными параметрами, характеризующими синглетную (оди­ночную) линию поглощения, являются n pe з, В рез, g (положение точки резонанса), соответствующие условию (25.9). При постоян­ной частоте v значение В рез зависит от g-фактора. В простейшем случае g-фактор позволяет определить характер магнетизма сис­темы (спиновый или орбитальный). Если же электрон связан с атомом, входящим в состав твердой кристаллической решетки или какой-либо молекулярной системы, то на него будут влиять сильные внутренние поля. Измеряя g-фактор, можно получить информацию о полях и внутримолекулярных связях.

Однако если бы при исследовании получалась только синглетная линия поглощения, то многие приложения магнитных резо­нансных методов были бы невозможны. Большинство приложе­ний, в том числе и медико-биологических, базируется на анализе группы линий. Наличие в спектре ЭПР группы близких линий ус­ловно называют расщеплением. Имеется два характерных типа расщепления для спектра ЭПР.

Первое - электронное расщепление - возникает в тех случа­ях, когда молекула или атом обладают не одним, а несколькими электронами, вызывающими ЭПР. Второе - сверхтонкое рас­щепление - наблюдается при взаимодействии электронов с маг­нитным моментом ядра.

Современная методика измерения ЭПР основывается на опре­делении изменения какого-либо параметра системы, происходя­щего при поглощении электромагнитной энергии.

Прибор, используемый для этой цели называют ЭПР-спектро­метром. Он состоит из следующих основных частей (рис. 25.5): 1 - электромагнит, создающий сильное однородное магнитное поле, индукция которого может плавно изменяться; 2 - генера­тор СВЧ-излучения электромагнитного поля; 3 - специальная

«поглощающая ячейка», которая концентрирует падающее СВЧ-излучение на образце и позволяет обнаружить поглощение энергии образцом (объемный резонатор); 4 - электронная схема, обеспечивающая наблюдение или запись спектров ЭПР; 5 - обра­зец; 6 - осциллограф.

В современных ЭПР-спектрометрах используют частоту около 10 ГГц (длина волны 0,03 м). Это означает в соответствии с (25.9), что максимум ЭПР поглощения для g = 2 наблюдается при В = 0,ЗТл.

Практически на ЭПР-спектрометрах регистрируют не кривую поглощения энергии (рис. 25.6, а), а ее производную (рис. 25.6, б). Одно из медико-биологических применений метода ЭПР за­ключается в обнаружении и исследовании свободных радикалов. Так, например, спектры ЭПР облученных белков позволили объ­яснить механизм образования свободных радикалов и в связи с этим проследить изменения первичных и вторичных продуктов радиационного поражения.

ЭПР широко используют для изучения фотохимических про­цессов, в частности фотосинтеза. Исследуют канцерогенную ак­тивность некоторых веществ.

С санитарно-гигиенической целью метод ЭПР используют для определения концентрации радикалов в воздушной среде.

Сравнительно недавно специально для изучения биологических молекул был предложен метод спин-меток, сущность которого со­стоит в том, что с молекулой исследуемого объекта связывается парамагнитное соединение с хорошо известной структурой. По спектрам ЭПР находят положение такой спин-метки в молекуле. Вводя метки в различные части молекул, можно установить распо­ложение различных групп атомов, их взаимодействия, изучать природу и ориентацию химических связей и обнаруживать моле­кулярное движение. Присоединение к молекуле не одной, а не­скольких спин-меток, например двух, позволяет получить сведе­ния о расстояниях меченых групп и их взаимной ориентации.

Используются также и спиновые зонды - парамагнитные час­тицы, которые нековалентно связаны с молекулами. Изменение ЭПР-спектра спиновых зондов дает информацию о состоянии ок­ружающих его молекул. На рис. 25.7 показаны ЭПР-спектры нитроксильного радикала, который в качестве спинового зонда помещен в глицерин. С увеличением температуры уменьшается вязкость глицерина, и это изменяет вид спектра ЭПР. Таким об­разом, по форме спектра ЭПР можно определить микровязкость - вязкость ближайшего окружения спинового зонда. Так, в част­ности, удается определить микровязкость липидного слоя мемб­ран (см. § 11.2).

В целом исследования биологических объектов методом ЭПР имеют широкую область применений.

§ 25.3. Ядерный магнитный резонанс. ЯМР-интроскопия (магнито-резонансная томография)

Ядерный магнитный резонанс не относится к разделу физики атомов и молекул, однако рассматривается в одной главе с ЭПР как явление магнитного резонанса.

Магнитный момент ядер суммируется из магнитных моментов нуклонов. Обычно этот момент выражают в ядерных магнетонах (m я); m я = 5,05 10 -27 А м 2 . Магнитный момент протона прибли­женно равен р mp = 2,79m я, а нейтрона р тп = -1,91m я. Знак «-» оз­начает, что магнитный момент нейтрона ориентирован противо­положно спину.

Приведем магнитные моменты р тя некоторых ядер, выражен­ные в ядерных магнетонах.

Таблица 32

Магнитный момент ядра, помещенного в магнитное поле, мо­жет принимать лишь дискретную ориентацию. Это означает, что энергии ядра будут соответствовать подуровни, расстояние между которыми зависит от индукции магнитного поля.

Если в этих условиях на ядро воздействовать электромагнит­ным полем, то можно вызвать переходы между подуровнями. Чтобы осуществить эти переходы, а также поглощение энергии электромагнитного поля, необходимо выполнение условия, ана­логичного (25.9):

где g я - ядерный множитель Ланде.

Избирательное поглощение электромагнитных волн опре­деленной частоты веществом в постоянном магнитном по­ле, обусловленное переориентацией магнитных моментов ядер, называют ядерным магнитным резонансом.

ЯМР можно наблюдать при выполнении условия (25.10) лишь для свободных атомных ядер. Экспериментальные значения резо­нансных частот ядер, находящихся в атомах и молекулах, не со­ответствуют (25.10). При этом происходит «химический сдвиг», который возникает в результате влияния локального (местного) магнитного поля, создаваемого внутри атома электронными тока­ми i индуцированными внешним магнитным полем. В результате такого «диамагнитного эффекта» возникает дополнительное маг­нитное поле, индукция которого пропорциональна индукции внешнего магнитного поля, но противоположна ему по направле­нию. Поэтому полное эффективное магнитное поле, действующее на ядро, характеризуется индукцией

где s - постоянная экранирования, по порядку величины равная 10 -6 и зависящая от электронного окружения ядер.

Отсюда следует, что для данного типа ядер, находящихся в различных окружениях (разные молекулы или разные, не экви­валентные места одной и той же молекулы), резонанс наблюдает­ся при различных частотах. Это и определяет химический сдвиг. Он зависит от природы химической связи, электронного строения молекул, концентрации данного вещества, типа растворителя, температуры и т. д.

Если два или несколько ядер в молекуле экранированы по-раз­ному, т. е. ядра в молекуле занимают химически не эквивалентные положения, то они имеют различный химический сдвиг. Спектр ЯМР такой молекулы содержит столько резонансных ли­ний, сколько химически не эквивалентных групп ядер данного типа в ней имеется. Интенсивность каждой линии пропорци­ональна числу ядер в данной группе.

В спектрах ЯМР различают два типа линий по их ширине. Спектры твердых тел имеют большую ширину, и эту об­ласть применения ЯМР называют ЯМР широких линий. В жидкостях наблюда­ют узкие линии, и это называют ЯМР высокого разрешения.

На рис. 25.8 изображены кривые ядер­ного магнитного резонанса для твердых тел (а) и жидкостей (б). Острота пика в жидкостях обусловлена следующим. Каж­дое ядро взаимодействует со своими сосе­дями. Так как ориентация ядерных маг­нитных моментов, окружающих ядро дан­ного типа, изменяется от точки к точке в веществе, то полное магнитное поле, действующее на различные однотипные ядра, также изменяется. Это означает, что для всей совокупности ядер область резонанса долж­на представлять собой широкую линию. Однако из-за быстрых пе­ремещений молекул в жидкости локальные магнитные поля не­долговечны. Это приводит к тому, что ядра жидкости находятся под воздействием одного и того же среднего поля, поэтому линия резонанса является резкой.

Для химических соединений, в которых наблюдается ЯМР ядер, занимающих химически эквивалентные места в молекуле, наблюдается одиночная линия. Соединения более сложного стро­ения дают спектры из многих линий.

По химическому сдвигу, числу и положению спектральных линий можно установить структуру молекул.

Химики и биохимики широко используют метод ЯМР для ис­следования структуры от простейших молекул неорганических веществ до сложнейших молекул живых объектов, а также при решении многих задач, связанных с протеканием химических ре­акций, изучением структур исходных веществ и получающихся в результате реакций продуктов. Одним из преимуществ этого ана­лиза является то, что он не разрушает объектов исследования, как это происходит, например, при химическом анализе.

Очень интересные возможности для медицины может дать опре­деление параметров спектра ЯМР во многих точках образца. Посте­пенно, послойно проходя весь образец (сканируя), можно получить полное представление о пространственном распределении молекул, содержащих, например, атомы водорода или фосфора (при магнит­ном резонансе от протонов или ядер фосфора соответственно).

Все это осуществляется без разрушения образца, и поэтому можно проводить исследование на живых объектах. Такой метод называют ЯМР-интроскопией (об интроскопии см. § 19.8) или магнито-резонансной томографией (МРТ). Он позволяет разли­чать кости, сосуды, нормальные ткани и ткани со злокачествен­ной патологией. ЯМР-интроскопия позволяет различать изобра­жение мягких тканей, например, отличает изображение серого вещества мозга от белого, опухолевых клеток от здоровых, при этом минимальные размеры патологических «включений» могут составлять доли миллиметра. Можно ожидать, что ЯМР-интрос­копия станет эффективным методом диагностики заболеваний, которые связаны с изменением состояний органов и тканей.

Частота электромагнитных волн, вызывающих переходы меж­ду энергетическими состояниями при ЭПР и ЯМР, соответствует радиодиапазону. Поэтому оба этих явления относятся к радио­спектроскопии.

ядерный магнитный резонанс спектрометрия

ЯМР -- самый мощный и информативный метод исследования молекул. Строго говоря, это не один метод, это большое число разнообразных типов экспериментов, т. е. импульсных последовательностей. Хотя все они основаны на явлении ЯМР, но каждый из этих экспериментов предназначен для получения какой-то конкретной специфической информации. Число этих экспериментов измеряется многими десятками, если не сотнями. Теоретически ЯМР может если не всё, то почти всё, что могут все остальные экспериментальные методы исследования структуры и динамики молекул, хотя практически это выполнимо, конечно, далеко не всегда. Одно из основных достоинств ЯМР в том, что, с одной стороны, его природные зонды, т. е. магнитные ядра, распределены по всей молекуле, а с другой стороны, он позволяет отличить эти ядра друг от друга и получать пространственно-селективные данные о свойствах молекулы. Почти все остальные методы дают информацию либо усредненную по всей молекуле, либо только о какой-то одной ее части.

Основных недостатков у ЯМР два. Во-первых, это низкая чувствительность по сравнению с большинством других экспериментальных методов (оптическая спектроскопия, флюоресценция, ЭПР и т. п.). Это приводит к тому, что для усреднения шумов сигнал нужно накапливать долгое время. В некоторых случаях ЯМР-эксперимент может проводиться в течение даже нескольких недель. Во-вторых, это его дороговизна. ЯМР-спектрометры -- одни из самых дорогих научных приборов, их стоимость измеряется как минимум сотнями тысяч долларов, а самые дорогие спектрометры стоят несколько миллионов. Далеко не все лаборатории, особенно в России, могут позволить себе иметь такое научное оборудова.

Применение ЯМР

Применение спектроскопии ЯМР. Спектроскопия ЯМР относится к неразрушающим методам анализа. Современная импульсная ЯМР фурье-спектроскопия позволяет вести анализ по 80 магнитным ядрам. ЯМР спектроскопия - один из основных физико-химических методов анализа, ее данные используют для однозначной идентификации как промежуточных продуктов химических реакций, так и целевых. Помимо структурных отнесений и количественного анализа, спектроскопия ЯМР приносит информацию о конформационных равновесиях, диффузии атомов и молекул в твердых телах, внутренних движениях, водородных связях и ассоциации в жидкостях, таутомерии, металлах и прототропии, упорядоченности и распределении звеньев в полимерных цепях, электронной структуре ионных кристаллов, жидких кристаллов и др. Спектроскопия ЯМР - источник информации о структуре биополимеров, в т. ч. белковых молекул в растворах, сопоставимой по достоверности с данными рентгеноструктурного анализа. В 80-е гг. началось бурное внедрение методов спектроскопии и томографии ЯМР в медицину для диагностики сложных заболеваний и при диспансеризации населения. Число и положение линий в спектрах ЯМР однозначно характеризуют все фракции сырой нефти, синтетических каучуков, пластмасс, сланцев, углей, лекарств, препаратов, продукции химии и фармацевтическими и др. Интенсивность и ширина линии ЯМР воды или масла позволяют с высокой точностью измерять влажность и масличность семян, сохранность зерна. При отстройке от сигналов воды можно регистрировать содержание клейковины в каждом зерне, что так же, как и анализ масличности, позволяет вести ускоренную селекцию с.-х. культур. Применение все более сильных магнитных полей (до 14 Тл в серийных приборах и до 19 Тл в экспериментальных установках) обеспечивает возможность полного определения структуры белковых молекул в растворах, экспресс-анализа биологических жидкостей (концентрации эндогенных метаболитов в крови, моче, лимфе, спинномозговой жидкости), контроля качества новых полимерных материалов. При этом применяют многочисленные варианты многоквантовых и многомерных фурье-спектроскопических методик.

Ядерный магнитный резонанс (ЯМР) представляет собой ядерную спектроскопию, которая находит широкое применение во всех физических науках и промышленности. В ЯМР для зондирования собственных спиновых свойств атомных ядер используется большой магнит. Подобно любой спектроскопии, для создания перехода между энергетическими уровнями (резонанса) в ней применяется электромагнитное излучение (радиочастотные волны в диапазоне УКВ ). В химии ЯМР помогает определить структуру малых молекул. Ядерно-магнитный резонанс в медицине нашел применение в магнитно-резонансной томографии (МРТ).

Открытие

ЯМР был обнаружен в 1946 году учеными Гарвардского университета Перселем , Фунтом и Торри , а также Блохом , Хансеном и Паккардом из Стэнфорда. Они заметили, что ядра 1 H и 31 P (протон и фосфор-31) способны поглощать радиочастотную энергию при воздействии на них магнитного поля, сила которого специфична для каждого атома. При поглощении они начинали резонировать, каждый элемент на своей частоте. Это наблюдение позволило провести детальный анализ строения молекулы. С тех пор ЯМР нашел применение в кинетических и структурных исследованиях твердых тел, жидкостей и газов, в результате чего было присуждено 6 Нобелевских премий.

Спин и магнитные свойства

Ядро состоит из элементарных частиц, называемых нейтронами и протонами. Они обладают собственным моментом импульса, называемым спином. Подобно электронам, спин ядра можно описать квантовыми числами I и в магнитном поле m. Атомные ядра с четным числом протонов и нейтронов имеют нулевой спин, а все остальные - ненулевой. Кроме того, молекулы с ненулевым спином обладают магнитным моментом μ = γ I , где γ - гиромагнитное отношение, константа пропорциональности между магнитным дипольным моментом и угловым, разным у каждого атома.

Магнитный момент ядра заставляет его ​​вести себя как крошечный магнит. В отсутствие внешнего магнитного поля каждый магнит ориентирован случайным образом. Во время проведения эксперимента ЯМР образец помещается во внешнее магнитное поле В 0 , что заставляет стержневые магниты с низкой энергией выравниваться в направлении B 0 , а с высокой - в противоположном. При этом происходит изменение ориентации спина магнитов. Чтобы понять эту довольно абстрактную концепцию, следует рассмотреть энергетические уровни ядра во время эксперимента ЯМР.

Энергетические уровни

Для переворота спина необходимо целое число квантов. Для любого m существует 2m + 1 энергетических уровней. Для ядра со спином 1/2 их только 2 - низкий, занимаемый спинами, выровненными с B 0 , и высокий, занятый спинами, направленными против В 0 . Каждый энергетический уровень определяется выражением Е = -mℏγВ 0 , где m - магнитное квантовое число, в этом случае +/- 1/2. Энергетические уровни для m > 1/2, известные как квадрупольные ядра, более сложны.

Разность энергий уровней равна: ΔE = ℏγВ 0 , где ℏ - постоянная Планка.

Как видно, сила магнитного поля имеет большое значение, поскольку при ее отсутствии уровни вырождаются.

Энергопереходы

Для возникновения ядерного магнитного резонанса должен произойти переворот спина между уровнями энергии. Разность энергий двух состояний соответствует энергии электромагнитного излучения, которая заставляет ядра изменять свои энергетические уровни. Для большинства ЯМР-спектрометров В 0 имеет порядок 1 Тесла (Т ), а γ - 10 7 . Следовательно, требуемое электромагнитное излучение имеет порядок 10 7 Гц. Энергия фотона представлена ​​формулой Е = hν. Поэтому частота, необходимая для поглощения, равна: ν= γВ 0 /2π.

Ядерное экранирование

Физика ЯМР основана на концепции ядерного экранирования, которое позволяет определять структуру вещества. Каждый атом окружен электронами, вращающимися вокруг ядра и действующими на его магнитное поле, что в свою очередь вызывает небольшие изменения энергетических уровней. Это и называется экранированием. Ядра, которые испытывают различные магнитные поля, связанные с локальными электронными взаимодействиями, называют неэквивалентными. Изменение энергетических уровней для переворота спина требует другой частоты, что создает новый пик в спектре ЯМР. Экранирование позволяет осуществлять структурное определение молекул путем анализа сигнала ЯМР с помощью преобразования Фурье. Результатом является спектр, состоящий из набора пиков, каждый из которых соответствует отдельной химической среде. Площадь пика прямо пропорциональна числу ядер. Подробная информация о структуре извлекается путем ЯМР-взаимодействий , по-разному изменяющих спектр.

Релаксация

Релаксация относится к явлению возврата ядер в их термодинамически стабильные после возбуждения до более высоких энергетических уровней состояния. При этом высвобождается энергия, поглощенная при переходе с более низкого уровня к более высокому. Это довольно сложный процесс, проходящий в разных временных рамках. Двумя наиболее распространенными типами релаксации являются спин-решеточная и спин-спиновая.

Чтобы понять релаксацию, необходимо рассмотреть весь образец. Если ядра поместить во внешнее магнитное поле, они создадут объемную намагниченность вдоль оси Z. Их спины также когерентны и позволяют обнаружить сигнал. ЯМР сдвигает объемную намагниченность от оси Z в плоскость XY, где она и проявляется.

Спин-решеточная релаксация характеризуется временем T 1 , необходимым для восстановления 37 % объемной намагниченности вдоль оси Z. Чем эффективнее процесс релаксации, тем меньше T 1 . В твердых телах, поскольку движение между молекулами ограничено, время релаксации велико. Измерения обычно проводятся импульсными методами.

Спин-спиновая релаксация характеризуется временем потери взаимной когерентности T 2 . Оно может быть меньшим или равным T 1 .

Ядерный магнитный резонанс и его применение

Две основные области, в которых ЯМР оказался чрезвычайно важным, - это медицина и химия, однако каждый день разрабатываются новые сферы его применения.

Ядерная магнитно-резонансная томография, более известная как магнитно-резонансная (МРТ), является важным медицинским диагностическим инструментом , используемым для изучения функций и структуры человеческого тела. Она позволяет получить подробные изображения любого органа, особенно мягких тканей, во всех возможных плоскостях. Используется в областях сердечно-сосудистой, неврологической, костно-мышечной и онкологической визуализации. В отличие от альтернативной компьютерной, магнитно-резонансная томография не использует ионизирующее излучение, следовательно совершенно безопасна.

МРТ позволяет выявить незначительные изменения, происходящие со временем. ЯМР-интроскопию можно использовать для выявления структурных аномалий, возникающих в ходе болезни, а также того, как они влияют на последующее развитие и как их прогрессирование коррелирует с психическими и эмоциональными аспектами расстройства. Поскольку МРТ плохо визуализирует кость, получаются превосходные изображения внутричерепного и внутрипозвоночного содержимого.

Принципы использования ядерно-магнитного резонанса в диагностике

Во время процедуры МРТ пациент лежит внутри массивного полого цилиндрического магнита и подвергается воздействию мощного устойчивого магнитного поля. Разные атомы в сканируемой части тела резонируют на разных частотах поля. МРТ используется прежде всего для обнаружения колебаний атомов водорода, которые содержат вращающееся протонное ядро, обладающее небольшим магнитным полем. При МРТ фоновое магнитное поле выстраивает в линию все атомы водорода в ткани. Второе магнитное поле, ориентация которого отличается от фонового, включается и выключается много раз в секунду. На определенной частоте атомы резонируют и выстраиваются в линию со вторым полем. Когда оно выключается, атомы возвращаются обратно, выравниваясь с фоном. При этом возникает сигнал, который можно принять и преобразовать в изображение.

Ткани с большим количеством водорода, который присутствует в организме человека в составе воды, создает яркое изображение, а с малым его содержанием или отсутствием (например, кости) выглядят темными . Яркость МРТ усиливается благодаря контрастному веществу, такому как гадодиамид , который пациенты принимают перед процедурой. Хотя эти агенты могут улучшить качество изображений, по своей чувствительности процедура остается относительно ограниченной. Разрабатываются методы повышения чувствительности МРТ. Наиболее перспективным является использование параводорода - формы водорода с уникальными свойствами молекулярного спина, который очень чувствителен к магнитным полям.

Улучшение характеристик магнитных полей, используемых в МРТ, привело к разработке высокочувствительных методов визуализации, таких как диффузионная и функциональная МРТ, которые предназначены для отображения очень специфических свойств тканей. Кроме того, уникальная форма МРТ-технологии , называемая магнитно-резонансной ангиографией, используется для получения изображения движения крови. Она позволяет визуализировать артерии и вены без необходимости в иглах, катетерах или контрастных агентах. Как и в случае с МРТ, эти методы помогли революционизировать биомедицинские исследования и диагностику.

Передовые компьютерные технологии позволили радиологам из цифровых сечений, полученных сканерами МРТ, создавать трехмерные голограммы, служащие для определения точной локализации повреждений. Томография особенно ценна при обследовании головного и спинного мозга, а также органов таза, таких как мочевой пузырь, и губчатой кости. Метод позволяет быстро и ясно точно определить степень поражения опухолью и оценить потенциальный ущерб от инсульта, позволяя врачам своевременно назначать надлежащее лечение. МРТ в значительной степени вытеснила артрографию , необходимость вводить контрастное вещество в сустав для визуализации хряща или повреждение связок, а также миелографию , инъекцию контрастного вещества в позвоночный канал для визуализации нарушений спинного мозга или межпозвонкового диска.

Применение в химии

Во многих лабораториях сегодня ядерный магнитный резонанс используется для определения структур важных химических и биологических соединений. В спектрах ЯМР различные пики дают информацию о конкретном химическом окружении и связях между атомами. Наиболее распространенными изотопами, используемыми для обнаружения сигналов магнитного резонанса, являются 1 H и 13 C, но подходит и множество других, таких как 2 H, 3 He , 15 N, 19 F и т. д.

Современная ЯМР-спектроскопия нашла широкое применение в биомолекулярных системах и играет важную роль в структурной биологии. С развитием методологии и инструментов ЯМР стал одним из самых мощных и универсальных спектроскопических методов анализа биомакромолекул, который позволяет характеризовать их и их комплексы размерами до 100 кДа . Совместно с рентгеновской кристаллографией это одна из двух ведущих технологий определения их структуры на атомном уровне. Кроме того, ЯМР предоставляет уникальную и важную информацию о функциях белка, которая играет решающую роль в разработке лекарственных препаратов. Некоторые из применений ЯМР-спектроскопии приведены ниже.

  • Это единственный метод определения атомной структуры биомакромолекул в водных растворах в близких к физиологическим условиях или имитирующих мембрану средах.
  • Молекулярная динамика. Это наиболее мощный метод количественного определения динамических свойств биомакромолекул .
  • Сворачивание белка. ЯМР-спектроскопия является наиболее мощным инструментом для определения остаточных структур развернутых белков и посредников сворачивания.
  • Состояние ионизации. Метод эффективен при определении химических свойств функциональных групп в биомакромолекулах, таких как ионизационные состояния ионизируемых групп активных участков ферментов .
  • Ядерный магнитный резонанс позволяет изучить слабые функциональные взаимодействия между макробиомолекулами (например, с константами диссоциации в микромолярном и миллимолярном диапазонах), что невозможно сделать с помощью других методов.
  • Гидратация белков. ЯМР является инструментом для обнаружения внутренней воды и ее взаимодействия с биомакромолекулами.
  • Это уникальный метод прямого обнаружения взаимодействия водородных связей .
  • Скрининг и разработка лекарств. В частности, метод ядерного магнитного резонанса особенно полезен при идентификации препаратов и определении конформаций соединений, связанных с ферментами, рецепторами и другими белками.
  • Нативный мембранный белок. Твердотельный ЯМР обладает потенциалом определения атомных структур доменов мембранных белков в среде нативной мембраны, в том числе со связанными лигандами.
  • Метаболический анализ.
  • Химический анализ. Химическая идентификация и конформационный анализ синтетических и природных химических веществ.
  • Материаловедение. Мощный инструмент в исследовании химии и физики полимеров.

Другие применения

Ядерный магнитный резонанс и его применение не ограничены медициной и химией. Метод оказался очень полезным и в других областях, таких как климатические испытания, нефтяная промышленность, управление процессами, ЯМР поля Земли и магнитометры. Неразрушающий контроль позволяет сэкономить на дорогих биологических образцах, которые могут быть использованы повторно, если необходимо провести больше испытаний. Ядерно-магнитный резонанс в геологии используется для измерения пористости пород и проницаемости подземных жидкостей. Магнитометры применяются для измерения различных магнитных полей.

ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС (ЯМР), явление резонансного поглощения радиочастотной электромагн. энергии в-вом с ненулевыми магн. моментами ядер, находящимся во внеш. постоянном мага. поле. Ненулевым ядерным магн. моментом обладают ядра 1 Н, 2 Н, 13 С, 14 N, 15 N, 19 F, 29 Si, 31 P и др. ЯМР обычно наблюдается в однородном постоянном магн. поле В 0 , на к-рое накладывается слабое радиочастотное поле В 1 перпендикулярное полю В 0 . Для в-в, у к-рых ядерный I= 1 / 2 (1 H, 13 C, 15 N, 19 F, 29 Si, 31 P и др.), в поле В 0 возможны две ориентации магн. ядра "по полю" и "против поля". Возникающие два уровня энергии Е за счет взаимод. магн. момента ядра с полем В 0 разделены интервалом
При условии, что илигде h - , v 0 - частота радиочастотного поля В 1 , - круговая частота,- т. наз. гиромагн. отношение ядра, наблюдается резонансное поглощение энергии поля B 1 , названное ЯМР. Для 1 H, 13 C, 31 Р частоты ЯМР в поле В 0 = 11,7 Тл равны соотв. (в МГц): 500, 160,42 и 202,4; значения (в МГц/Тл): 42,58, 10,68 и 17,24. Согласно квантовой модели в поле В 0 возникает 2I+1 уровней энергии, переходы между к-рыми разрешены при где т - магн. квантовое число.

Техника эксперимента. Параметры спектров ЯМР. На явлении ЯМР основана . Спектры ЯМР регистрируют с помощью радиоспектрометров (рис.). Образец исследуемого в-ва помещают как сердечник в катушку генерирующего контура (поле B 1), расположенного в зазоре магнита, создающего поле В 0 так, что При наступает резонансное поглощение, что вызывает падение напряжения на контуре, в схему к-рого включена катушка с образцом. Падение напряжения детектируется, усиливается и подается на развертку осциллографа или записывающее устройство. В совр. радиоспектрометрах ЯМР обычно используют мага, поля напряженностью 1-12 Тл. Область спектра, в к-рой имеется детектируемый сигнал с одним или неск. максимумами, наз. линией поглощения ЯМР. Ширина наблюдаемой линии, измеренная на половине макс. интенсивности и выраженная в Гц, наз. шириной линии ЯМР. Разрешение спектра ЯМР - миним. ширина линии ЯМР, к-рую позволяет наблюдать данный спектрометр. Скорость прохождения - скорость (в Гц/с), с к-рой изменяется напряженность магн. поля или частота воздействующего на образец радиочастотного излучения при получении спектра ЯМР.

Схема спектрометра ЯМР: 1 - катушка с образцом; 2 - полюса магнита; 3 -генератор радиочастотного поля; 4 -усилитель и детектор; 5 - генератор модулирующего напряжения; 6 - катушки модуляции поля В 0 ; 7 - осциллограф.

Поглощенную энергию система перераспределяет внутри себя (т. наз. спин-спиновая, или поперечная ; характеристич. время Т 2) и отдает в (спин-решеточная , время Т 1). Времена Т 1 и Т 2 несут информацию о межъядерных расстояниях и временах корреляции разл. мол. движений. Измерения зависимости Т 1 и Т 2 от т-ры и частоты v 0 дают информацию о характере теплового движения, хим. , и др. В с жесткой решеткой Т 2 = 10 мкс, а Т 1 > 10 3 с, т. к. регулярный механизм спин-решеточной отсутствует и обусловлена парамагн. примесями. Из-за малости Т 2 естественная ширина линии ЯМР весьма велика (десятки кГц), их регистрация -область ЯМР широких линий. В малой Т 1 T 2 и измеряется секундами. Соотв. линии ЯМР имеют ширину порядка 10 -1 Гц (ЯМР высокого разрешения). Для неискаженного воспроизведения формы линии надо проходить через линию шириной 0,1 Гц в течение 100 с. Это накладывает существенные ограничения на чувствительность спектрометров ЯМР.
Основной параметр спектра ЯМР - хим. сдвиг- взятое с соответствующим знаком отношение разности частот наблюдаемого сигнала ЯМР и нек-рого условно выбранного эталонного сигнала к.-л. стандарта к частоте эталонного сигнала (выражается в миллионных долях, м. д.). Хим. сдвиги ЯМР измеряют в безразмерных величинах отсчитанных от пика эталонного сигнала. Если стандарт дает сигнал на частоте v 0 , то В зависимости от природы исследуемых ядер различают протонный ЯМР, или ПМР, и ЯМР 13 С (таблицы величин хим. сдвигов приведены на форзацах тома),. ЯМР 19 F (см. ), ЯМР 31 Р (см. )и т. д. Величины обладают существенной характеристичностью и позволяют определять по спектрам ЯМР наличие определенных мол. фрагментов. Соответствующие данные о хим. сдвигах разл. ядер публикуются в справочных и учебных пособиях, а также заносятся в базы данных, к-рыми снабжаются совр. спектрометры ЯМР. В рядах близких по строению соединений хим. сдвиг прямо пропорционален на соответствующих ядрах.
Общепринятый стандарт для ПМР и ЯМР 13 С - тетраметилсилан (ТМС). Стандарт м. б. растворен в исследуемом р-ре (внутр. эталон) или помещен, напр., в запаянный капилляр, находящийся внутри ампулы с образцом (внеш. эталон). В качестве р-рителей могут использоваться лишь такие, чье собственное поглощение не перекрывается с областью, представляющей интерес для исследования. Для ПМР лучшие р-рители - те, что не содержат (СС1 4 , CDC1 3 , CS 2 , D 2 O и др.).
В многоатомных ядра одинаковых , занимающих химически неэквивалентные положения, имеют различающиеся хим. сдвиги, обусловленные различием магн. экранирования ядер валентными (такие ядра наз. анизохронными). Для i-го ядра где- постоянная диамагн. экранирования, измеряемая в м. д. Для типичный интервал изменений- до 20 м. д., для более тяжелых ядер эти интервалы на 2-3 порядка больше.
Важный параметр спектров ЯМР - спин-спинового взаимод. ( ССВ) - мера непрямого ССВ между разл. магн. ядрами одной (см. ); выражается в Гц.
Взаимод. ядерных со , содержащимися в между ядрами i и j, приводят к взаимной ориентации этих ядер в поле В 0 (ССВ). При достаточном разрешении ССВ приводит к дополнит. линий, отвечающих определенным значениям хим. сдвигов: где J ij - ССВ; F ij - величины, значения к-рых определяются ядер i и j, соответствующего мол. фрагмента, диэдральными углами между хим. связями и числом этих связей между ядрами, участвующими в ССВ.
Если хим. сдвиги достаточно велики, т. е. min max (J ij), то ССВ проявляются в виде простых мультиплетов с биномиальным распределением интенсивностей (спектры первого порядка). Так в этильной группе сигнал метильных проявляется в виде с соотношением интенсивностей 1:2:1, а сигнал метиленовых - в виде квадруплета с соотношением интенсивностей 1:3:3:1. В спектрах ЯМР 13 С метиновые группы - дублеты (1:1), а метиленовые и метильные - соотв. и квадруплеты, но с большими, чем в протонных спектpax, значениями ССВ. Хим. сдвиги в спектрах первого порядка равны интервалам между центрами мультиплетов, а J ij - расстояниям между соседними пиками мультиплета. Если условие первого порядка не выполняется, то спектры становятся сложными: в них ни один интервал, вообще говоря, не равен ни ни J ij . Точные значения параметров спектров получают из квантовомех. расчетов. Соответствующие программы входят в мат. обеспечение совр. спектрометров ЯМР. Информативность хим. сдвигов и ССВ превратила высокого разрешения в один из важнейших методов качеств. и количеств. анализа сложных смесей, систем, препаратов и композиций, а также исследования строения и реакц. способности . При изучении , вырожденных и др. динамич. систем, геом. структуры белковых в р-ре, при неразрушающем локальном хим. анализе живых и т. п. возможности методов ЯМР уникальны.

Ядерная намагниченность в-ва. В соответствии с распределением Больцмана в двухуровневой спин-системе из N отношение числа N + на нижнем уровне к числу N - на верхнем уровне равно где k - ; Т - т-ра. При В 0 = 1 Тл и Т=300 К для отношение N + /N - .= 1,00005. Это отношение и определяет величину ядерной намагниченности в-ва, помещенного в поле B 0 . Магн. момент m каждого ядра совершает прецессионное движение относительно оси z, вдоль к-рой направлено поле B 0 ; частота этого движения равна частоте ЯМР. Сумма проекций прецессирующих ядерных моментов на ось z образует макроскопич. намагниченность в-ва M z = 10 18 В плоскости ху, перпендикулярной оси z, проекции из-за случайности фаз прецессии равны нулю: М xy = 0. Поглощение энергии при ЯМР означает, что в единицу времени с нижнего уровня на верхний переходит больше , чем в обратном направлении, т. е. разность населенностей N + - N - убывает (нагрев спин-системы, насыщение ЯМР). При насыщении в стационарном режиме намагниченность системы может сильно возрасти. Это - т. наз. эффект Оверхаузера, для ядер обозначаемый NOE (Nuclear Overhauser effect), к-рый широко применяется для повышения чувствительности, а также для оценки межъядерных расстояний при изучении мол. геометрии методами .

Векторная модель ЯМР. При регистрации ЯМР на образец накладывают радиочастотное поле , действующее в плоскости ху. В этой плоскости поле В 1 можно рассматривать как два с амплитудами В 1т/ 2, вращающихся с частотой в противоположных направлениях. Вводят вращающуюся систему координат x"y"z, ось х" к-рой совпадает с В 1т/ 2, вращающимся в том же направлении, что и Его воздействие вызывает изменение угла при вершине конуса прецессии ядерных магн. моментов; ядерная намагниченность М z начинает зависеть от времени, а в плоскости х"у" появляется отличная от нуля проекция ядерной намагниченности. В неподвижной системе координат эта проекция вращается с частотой т. е. в катушке индуктивности наводится радиочастотное напряжение, к-рое после детектирования и дает сигнал ЯМР - ф-цию ядерной намагниченности от частоты различают медленное изменение (свип-режим) и импульсный ЯМР. Реальное сложное движение ядерной намагниченности создает в плоскости х"у" два независимых сигнала: М х, (синфазный с радиочастотным напряжением В 1)и М у" (сдвинутый относительно B 1 по фазе на 90 °С). Одновременная регистрация М х" и M y" (квадратурное детектирование) вдвое повышает чувствительность спектрометра ЯМР. При достаточно большой амплитуде В 1т проекции М z = М х" =М у" =0(насыщение ЯМР). Поэтому при непрерывном действии поля В 1 его амплитуда должна быть весьма малой, чтобы сохранить неизменными исходные условия наблюдения.
В импульсном ЯМР величина В 1 ,наоборот, выбирается настолько большой, чтобы за время t и Т 2 отклонить во вращающейся системе координат M z от оси z на угол . При= 90° импульс называют 90°-ным (/2-импульс); под его воздействием ядерной намагниченности оказывается в плоскости х"у", т. е. После окончания импульса M y" начинает убывать по амплитуде со временем Т 2 благодаря расхождению по фазе составляющих его элементарных (спин-спиновая ). равновесной ядерной намагниченности М z происходит со временем спин-решеточной T 1 . При= 180° (импульс) M z укладывается вдоль отрицат. направления оси z, релаксируя после окончания импульса к своему равновесному положению. Комбинации иимпульсов широко используются в совр. многоимпульсных вариантах .
Важной особенностью вращающейся системы координат является различие резонансных частот в ней и в неподвижной системе координат: если B 1 В лок (статич. локальное поле), то М прецессирует во вращающейся системе координат относительно поля При точной настройке в резонанс частота ЯМР во вращающейся системе координат Это позволяет существенно расширить возможности ЯМР при исследовании медленных процессов в в-ве.

Хим. обмен и спектры ЯМР (динамич. ЯМР). Параметрами двухпозиционного обмена А В служат времена пребывания и а также вероятности пребывания иПри низкой т-ре спектр ЯМР состоит из двух узких линий, отстоящих на Гц; затем при уменьшении и линии начинают уширяться, оставаясь на своих местах. Когда частота обмена начинает превышать исходное расстояние между линиями, линии начинают сближаться, а при 10-кратном превышении образуется одна широкая линия в центре интервала (v A , v B), если При дальнейшем росте т-ры эта объединенная линия становится узкой. Сопоставление эксперим. спектра с расчетным позволяет для каждой т-ры указать точную частоту хим. обмена, по этим данным вычисляют термодинамич. характеристики процесса. При многопозиционном обмене в сложном спектре ЯМР теоретич. спектр получают из квантовомех. расчета. Динамич. ЯМР - один из осн. методов изучения стереохим. нежесткости, конформационных и т. п.

Вращение под магическим углом. Выражение для потенциала диполь-дипольного взаимод. содержит множители где - угол между В 0 и межъядерным r ij . При=arccos 3 -1/2 = 54°44" ("магический" угол) эти множители обращаются в нуль, т. е. исчезают соответствующие вклады в ширину линии. Если закрутить твердый образец с очень большой скоростью вокруг оси, наклоненной под магич. углом к В 0 , то в можно получить спектры высокого разрешения с почти столь же узкими линиями, как в .

Широкие линии в . В с жесткой решеткой форма линии ЯМР обусловлена статич. распределением локальных магн. полей. Все ядра решетки, за исключением , в трансляционно-инвариантном объеме V 0 вокруг рассматриваемого ядра, дают гауссово распределение g(v) = exp(-v 2 /2a 2), где v - расстояние от центра линии; ширина гауссианы а обратно пропорциональна среднему геом. объемов V 0 и V 1 ,причем V 1 характеризует среднюю по всему магн. ядер. Внутри V 0 магн. ядер больше средней, и ближние ядра благодаря диполь-дипольному взаимод. и хим. сдвигам создают спектр, ограниченный на интервале (-b, b), где b примерно вдвое больше а. В первом приближении спектр можно считать прямоугольником, тогда фурье-образ линии, т. е. отклик спин-системы на 90°-ный импульс будет